• 1.

    Organization WH: Exposure to arsenic: a major public health concern. 2019.


    Google Scholar
     

  • 2.

    Kuo CC, Moon KA, Wang SL, Silbergeld E, Navas-Acien A. The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect. 2017;125(8):087001.


    Google Scholar
     

  • 3.

    Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, et al. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120(12):1658–70.

    CAS 

    Google Scholar
     

  • 4.

    Sung TC, Huang JW, Guo HR. Association between arsenic exposure and diabetes: a Meta-analysis. Biomed Res Int. 2015;2015:368087.


    Google Scholar
     

  • 5.

    Tseng CH. The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol. 2004;197(2):67–83.

    CAS 

    Google Scholar
     

  • 6.

    Carmean CM, Seino S. Braving the element: pancreatic beta-cell dysfunction and adaptation in response to arsenic exposure. Front Endocrinol (Lausanne). 2019;10:344.


    Google Scholar
     

  • 7.

    Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, et al. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect. 2010;118(6):864–70.

    CAS 

    Google Scholar
     

  • 8.

    Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56(7):1783–91.

    CAS 

    Google Scholar
     

  • 9.

    Izquierdo-Vega JA, Soto CA, Sanchez-Pena LC, De Vizcaya-Ruiz A, Del Razo LM. Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett. 2006;160(2):135–42.

    CAS 

    Google Scholar
     

  • 10.

    Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect. 2003;111(11):1429–38.

    CAS 

    Google Scholar
     

  • 11.

    Yu HS, Liao WT, Chang KL, Yu CL, Chen GS. Arsenic induces tumor necrosis factor alpha release and tumor necrosis factor receptor 1 signaling in T helper cell apoptosis. J Invest Dermatol. 2002;119(4):812–9.

    CAS 

    Google Scholar
     

  • 12.

    Wauson EM, Langan AS, Vorce RL. Sodium arsenite inhibits and reverses expression of adipogenic and fat cell-specific genes during in vitro adipogenesis. Toxicol Sci. 2002;65(2):211–9.

    CAS 

    Google Scholar
     

  • 13.

    Park SK, Peng Q, Bielak LF, Silver KD, Peyser PA, Mitchell BD. Arsenic exposure is associated with diminished insulin sensitivity in non-diabetic Amish adults. Diabetes Metab Res Rev. 2016;32(6):565–71.

    CAS 

    Google Scholar
     

  • 14.

    Mondal V, Hosen Z, Hossen F, Siddique AE, Tony SR, Islam Z, et al. Arsenic exposure-related hyperglycemia is linked to insulin resistance with concomitant reduction of skeletal muscle mass. Environ Int. 2020;143:105890.

    CAS 

    Google Scholar
     

  • 15.

    Diaz-Villasenor A, Cruz L, Cebrian A, Hernandez-Ramirez RU, Hiriart M, Garcia-Vargas G, et al. Arsenic exposure and calpain-10 polymorphisms impair the function of pancreatic beta-cells in humans: a pilot study of risk factors for T2DM. PLoS One. 2013;8(1):e51642.

    CAS 

    Google Scholar
     

  • 16.

    Baek K, Lee N, Chung I. Association of arsenobetaine with beta-cell function assessed by homeostasis model assessment (HOMA) in nondiabetic Koreans: data from the fourth Korea National Health and nutrition examination survey (KNHANES) 2008-2009. Ann Occup Environ Med. 2017;29:31.


    Google Scholar
     

  • 17.

    Wang X, Mukherjee B, Karvonen-Gutierrez CA, Herman WH, Batterman S, Harlow SD, et al. Urinary metal mixtures and longitudinal changes in glucose homeostasis: the study of Women’s health across the nation (SWAN). Environ Int. 2020;145:106109.

    CAS 

    Google Scholar
     

  • 18.

    Ashley-Martin J, Dodds L, Arbuckle TE, Bouchard MF, Shapiro GD, Fisher M, et al. Association between maternal urinary speciated arsenic concentrations and gestational diabetes in a cohort of Canadian women. Environ Int. 2018;121(Pt 1):714–20.

    CAS 

    Google Scholar
     

  • 19.

    Ettinger AS, Zota AR, Amarasiriwardena CJ, Hopkins MR, Schwartz J, Hu H, et al. Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect. 2009;117(7):1059–64.

    CAS 

    Google Scholar
     

  • 20.

    Farzan SF, Gossai A, Chen Y, Chasan-Taber L, Baker E, Karagas M. Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study. Environ Health. 2016;15(1):106.


    Google Scholar
     

  • 21.

    Marie C, Leger S, Guttmann A, Riviere O, Marchiset N, Lemery D, et al. Exposure to arsenic in tap water and gestational diabetes: a French semi-ecological study. Environ Res. 2018;161:248–55.

    CAS 

    Google Scholar
     

  • 22.

    Munoz MP, Valdes M, Munoz-Quezada MT, Lucero B, Rubilar P, Pino P, et al. Urinary inorganic arsenic concentration and gestational diabetes mellitus in pregnant women from Arica, Chile. Int J Environ Res Public Health. 2018;15(7).

  • 23.

    Peng Q, Harlow SD, Park SK. Urinary arsenic and insulin resistance in US adolescents. Int J Hyg Environ Health. 2015;218(4):407–13.

    CAS 

    Google Scholar
     

  • 24.

    Shapiro GD, Dodds L, Arbuckle TE, Ashley-Martin J, Fraser W, Fisher M, et al. Exposure to phthalates, bisphenol a and metals in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: the MIREC study. Environ Int. 2015;83:63–71.

    CAS 

    Google Scholar
     

  • 25.

    Wang Y, Zhang P, Chen X, Wu W, Feng Y, Yang H, et al. Multiple metal concentrations and gestational diabetes mellitus in Taiyuan, China. Chemosphere. 2019;237:124412.

    CAS 

    Google Scholar
     

  • 26.

    Xia X, Liang C, Sheng J, Yan S, Huang K, Li Z, et al. Association between serum arsenic levels and gestational diabetes mellitus: a population-based birth cohort study. Environ Pollut. 2018;235:850–6.

    CAS 

    Google Scholar
     

  • 27.

    Mazumdar M. Does arsenic increase the risk of neural tube defects among a highly exposed population? A new case-control study in Bangladesh. Birth Defects Res. 2017;109(2):92–8.

    CAS 

    Google Scholar
     

  • 28.

    Ahmad SA, Khan MH, Haque M. Arsenic contamination in groundwater in Bangladesh: implications and challenges for healthcare policy. Risk Manag Healthc Policy. 2018;11:251–61.


    Google Scholar
     

  • 29.

    Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Chandra Mukherjee S, et al. Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res. 2010;44(19):5789–802.

    CAS 

    Google Scholar
     

  • 30.

    Mazumdar M, Ibne Hasan MO, Hamid R, Valeri L, Paul L, Selhub J, et al. Arsenic is associated with reduced effect of folic acid in myelomeningocele prevention: a case control study in Bangladesh. Environ Health. 2015;14:34.


    Google Scholar
     

  • 31.

    Punshon T, Li Z, Marsit CJ, Jackson BP, Baker ER, Karagas MR. Placental metal concentrations in relation to maternal and infant toenails in a U.S. Cohort. Environ Sci Technol. 2016;50(3):1587–94.

    CAS 

    Google Scholar
     

  • 32.

    Franson MAH, Clesceri LS, Eaton AD, Greenberg AE. American Public health a, American water works a, water environment F: standard methods for the examination of water and wastewater, 19th ed. Washington, DC: American Public Health Association; 1996.


    Google Scholar
     

  • 33.

    Chen Y, Ahsan H, Parvez F, Howe GR. Validity of a food-frequency questionnaire for a large prospective cohort study in Bangladesh. Br J Nutr. 2004;92(5):851–9.

    CAS 

    Google Scholar
     

  • 34.

    Al-Rmalli SW, Jenkins RO, Haris PI. Betel quid chewing elevates human exposure to arsenic, cadmium and lead. J Hazard Mater. 2011;190(1-3):69–74.

    CAS 

    Google Scholar
     

  • 35.

    Ettinger AS, Arbuckle TE, Fisher M, Liang CL, Davis K, Cirtiu CM, et al. Arsenic levels among pregnant women and newborns in Canada: results from the maternal-infant research on environmental chemicals (MIREC) cohort. Environ Res. 2017;153:8–16.

    CAS 

    Google Scholar
     

  • 36.

    Kile ML, Houseman EA, Breton CV, Smith T, Quamruzzaman Q, Rahman M, et al. Dietary arsenic exposure in Bangladesh. Environ Health Perspect. 2007;115(6):889–93.

    CAS 

    Google Scholar
     

  • 37.

    Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, et al. Human exposure to organic arsenic species from seafood. Sci Total Environ. 2017;580:266–82.

    CAS 

    Google Scholar
     

  • 38.

    Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B. Beta-cell function declines within the first year postpartum in women with recent glucose intolerance in pregnancy. Diabetes Care. 2010;33(8):1798–804.

    CAS 

    Google Scholar
     

  • 39.

    Walsh CH, O’Regan J, O’Sullivan DJ. Effect of different periods of fasting on oral glucose tolerance. Br Med J. 1973;2(5868):691–3.

    CAS 

    Google Scholar
     

  • 40.

    Galtier F. Definition, epidemiology, risk factors. Diabetes Metab. 2010;36(6 Pt 2):628–51.

    CAS 

    Google Scholar
     

  • 41.

    Karagas MR, Tosteson TD, Blum J, Klaue B, Weiss JE, Stannard V, et al. Measurement of low levels of arsenic exposure: a comparison of water and toenail concentrations. Am J Epidemiol. 2000;152(1):84–90.

    CAS 

    Google Scholar
     

  • 42.

    T R. Arsenic. Hagerstown: Lippincott Williams & Wilkins; 2007.


    Google Scholar
     

  • 43.

    Bonaventura MM, Bourguignon NS, Bizzozzero M, Rodriguez D, Ventura C, Cocca C, et al. Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring. Food Chem Toxicol. 2017;100:207–16.

    CAS 

    Google Scholar
     

  • 44.

    Carmean CM, Kirkley AG, Landeche M, Ye H, Chellan B, Aldirawi H, et al. Arsenic exposure decreases adiposity during high-fat feeding. Obesity (Silver Spring). 2020;28(5):932–41.

    CAS 

    Google Scholar
     

  • 45.

    Liu S, Guo X, Wu B, Yu H, Zhang X, Li M. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep. 2014;4:6894.

    CAS 

    Google Scholar
     

  • 46.

    Gong Y, Liu J, Xue Y, Zhuang Z, Qian S, Zhou W, et al. Non-monotonic dose-response effects of arsenic on glucose metabolism. Toxicol Appl Pharmacol. 2019;377:114605.

    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)