• 1.

    Maddalena A, Richards CS, McGinniss MJ, Brothman A, Desnick RJ, Grier RE, et al. Technical standards and guidelines for fragile X: the first of a series of disease-specific supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics. Genet Med. 2001;3(3):200–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Seltzer MM, Baker MW, Hong J, Maenner M, Greenberg J, Mandel D. Prevalence of CGG expansions of the FMR1 gene in a US population-based sample. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(5):589–97.

    PubMed 

    Google Scholar
     

  • 3.

    Maenner MJ, Baker MW, Broman KW, Tian J, Barnes JK, Atkins A, et al. FMR1 CGG expansions: prevalence and sex ratios. Am J Med Genet B Neuropsychiatr Genet. 2013;162(5):466–73.

    CAS 

    Google Scholar
     

  • 4.

    Lubs HA, Stevenson RE, Schwartz CE. Fragile X and X-linked intellectual disability: four decades of discovery. The American Journal of Human Genetics. 2012;90(4):579–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Kraan CM, Godler DE, Amor DJ. Epigenetics of fragile X syndrome and fragile X-related disorders. Dev Med Child Neurol. 2019;61(2):121–7.

    PubMed 

    Google Scholar
     

  • 6.

    Gohel D, Sripada L, Prajapati P, Currim F, Roy M, Singh K, et al. Expression of expanded FMR1-CGG repeats alters mitochondrial miRNAs and modulates mitochondrial functions and cell death in cellular model of FXTAS. Free Radic Biol Med. 2021;165:100–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Usdin K, Kumari D. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders. Front Genet. 2015;6:192.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Allen E, Sullivan A, Marcus M, Small C, Dominguez C, Epstein M, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22(8):2142–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Sullivan SD, Welt C, Sherman S, editors. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med; 2011: © Thieme Medical Publishers.

  • 10.

    Coffey SM, Cook K, Tartaglia N, Tassone F, Nguyen DV, Pan R, et al. Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A. 2008;146(8):1009–16.


    Google Scholar
     

  • 11.

    Winarni TI, Chonchaiya W, Sumekar TA, Ashwood P, Morales GM, Tassone F, et al. Immune-mediated disorders among women carriers of fragile X premutation alleles. Am J Med Genet A. 2012;158(10):2473–81.

    CAS 

    Google Scholar
     

  • 12.

    Movaghar A, Page D, Brilliant M, Baker MW, Greenberg J, Hong J, et al. Data-driven phenotype discovery of FMR1 premutation carriers in a population-based sample. Science Advances. 2019;5(8):eaaw7195.

  • 13.

    Rodriguez-Revenga L, Madrigal I, Pagonabarraga J, Xuncla M, Badenas C, Kulisevsky J, et al. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Eur J Hum Genet. 2009;17(10):1359–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Leehey MA, Legg W, Tassone F, Hagerman R. Fibromyalgia in fragile X mental retardation 1 gene premutation carriers. Rheumatology (Oxford). 2011;50(12):2233–6.

    CAS 

    Google Scholar
     

  • 15.

    Roberts JE, Tonnsen BL, McCary LM, Ford AL, Golden RN, Bailey DB. Trajectory and predictors of depression and anxiety disorders in mothers with the FMR1 premutation. Biol Psychiatry. 2016;79(10):850–7.

    PubMed 

    Google Scholar
     

  • 16.

    Roberts JE, Bailey DB, Mankowski J, Ford A, Weisenfeld LA, Heath TM, et al. Mood and anxiety disorders in females with the FMR1 premutation. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(1):130–9.

    PubMed 

    Google Scholar
     

  • 17.

    Allen EG, Charen K, Hipp HS, Shubeck L, Amin A, He W, et al. Clustering of comorbid conditions among women who carry an FMR1 premutation. Genet Med. 2020:1–9.

  • 18.

    Kenna HA, Tartter M, Hall SS, Lightbody AA, Nguyen Q, de los Angeles CP, et al. High rates of comorbid depressive and anxiety disorders among women with premutation of the FMR1 gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2013;162(8):872–8.

  • 19.

    Klusek J, Hong J, Sterling A, Berry-Kravis E, Mailick MR. Inhibition deficits are modulated by age and CGG repeat length in carriers of the FMR1 premutation allele who are mothers of children with fragile X syndrome. Brain Cogn. 2020;139:105511.

  • 20.

    Shelton AL, Cornish KM, Kraan CM, Lozano R, Bui M, Fielding J. Executive dysfunction in female FMR1 premutation carriers. The Cerebellum. 2016;15(5):565–9.

    PubMed 

    Google Scholar
     

  • 21.

    Kraan CM, Hocking DR, Bradshaw JL, Fielding J, Cohen J, Georgiou-Karistianis N, et al. Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neurosci Biobehav Rev. 2013;37(3):522–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Moser C, Schmitt L, Schmidt J, Fairchild A, Klusek J. Response inhibition deficits in women with the FMR1 premutation are associated with age and fall risk. Brain Cogn. 2021;148:105675.

  • 23.

    Losh M, Klusek J, Martin GE, Sideris J, Parlier M, Piven J. Defining genetically meaningful language and personality traits in relatives of individuals with fragile X syndrome and relatives of individuals with autism. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(6):660–8.

    PubMed 

    Google Scholar
     

  • 24.

    Klusek J, Schmidt J, Fairchild AJ, Porter A, Roberts JE. Altered sensitivity to social gaze in the FMR1 premutation and pragmatic language competence. J Neurodev Disord. 2017;9:31.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Klusek J, Ruber A, Roberts JE. Impaired eye contact in the FMR1 premutation is not associated with social anxiety or the broad autism phenotype. Clin Neuropsychol. 2018;32:1337–52.

    PubMed 

    Google Scholar
     

  • 26.

    Klusek J, Fairchild AJ, Roberts JE. Vagal tone as a putative mechanism for pragmatic competence: an investigation of carriers of the FMR1 premutation J Autism Dev Disord. 2019;49:197–208.

  • 27.

    Hagerman RJ, Hagerman P. Fragile X-associated tremor/ataxia syndrome—features, mechanisms and management. Nat Rev Neurol. 2016;12(7):403–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Jacquemont S, Hagerman RJ, Leehey MA, Hall DA, Levine RA, Brunberg JA, et al. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. The Journal of the American Medical Association. 2004;306:461–568.


    Google Scholar
     

  • 29.

    Goodrich-Hunsaker NJ, Wong LM, McLennan Y, Srivastava S, Tassone F, Harvey D, et al. Young adult female fragile X premutation carriers show age- and genetically-modulated cognitive impairments. Brain Cogn. 2011.

  • 30.

    Sterling AM, Mailick M, Greenberg J, Warren SF, Brady N. Language dysfluencies in females with the FMR1 premutation. Brain Cogn. 2013;82(1):84–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Goodrich-Hunsaker NJ, Wong LM, McLennan Y, Tassone F, Harvey D, Rivera SM, et al. Adult female fragile X premutation carriers exhibit age- and CGG repeat length-related impairments on an attentionally-based enumeration task. Front Hum Neurosci. 2011;5.

  • 32.

    Chonchaiya W, Nguyen D, Au J, Campos L, Berry-Kravis E, Lohse K, et al. Clinical involvement in daughters of men with fragile X-associated tremor ataxia syndrome. Clin Genet. 2010;78(1):38–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Shickman R, Famula J, Tassone F, Leehey M, Ferrer E, Rivera SM, et al. Age-and CGG repeat-related slowing of manual movement in fragile X carriers: a prodrome of fragile X-associated tremor ataxia syndrome? Mov Disord. 2018;33(4):628–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Riley KP, Snowdon DA, Desrosiers MF, Markesbery WR. Early life linguistic ability, late life cognitive function, and neuropathology: findings from the Nun Study. Neurobiol Aging. 2005;26(3):341–7.

    PubMed 

    Google Scholar
     

  • 35.

    Mueller KD, Koscik RL, Hermann BP, Johnson SC, Turkstra LS. Declines in connected language are associated with very early mild cognitive impairment: results from the Wisconsin Registry for Alzheimer’s Prevention. Front Aging Neurosci. 2018;9:437.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    McCullough KC, Bayles KA, Bouldin ED. Language performance of individuals at risk for mild cognitive impairment. J Speech Lang Hear Res. 2019;62(3):706–22.

    PubMed 

    Google Scholar
     

  • 37.

    Taler V, Phillips NA. Language performance in Alzheimerʼs disease and mild cognitive impairment: a comparative review. J Clin Exp Neuropsychol. 2008;30(5):501–56.

    PubMed 

    Google Scholar
     

  • 38.

    Barker MS, Nelson NL, Robinson GA. Idea formulation for spoken language production: the interface of cognition and language. J Int Neuropsychol Soc. 2020;26(2):226–40.

    PubMed 

    Google Scholar
     

  • 39.

    Mueller KD, Hermann B, Mecollari J, Turkstra LS. Connected speech and language in mild cognitive impairment and Alzheimer’s disease: a review of picture description tasks. J Clin Exp Neuropsychol. 2018;40(9):917–39.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Ye Z, Zhou X. Executive control in language processing. Neurosci Biobehav Rev. 2009;33(8):1168–77.

    PubMed 

    Google Scholar
     

  • 41.

    Bayles K, McCullough K, Tomoeda CK. Cognitive-communication disorders of MCI and dementia: definition, assessment, and clinical management: Plural Publishing; 2018.

  • 42.

    Rogers SL, Friedman RB. The underlying mechanisms of semantic memory loss in Alzheimer’s disease and semantic dementia. Neuropsychologia. 2008;46(1):12–21.

    PubMed 

    Google Scholar
     

  • 43.

    Nippold MA, Cramond PM, Hayward-Mayhew C. Spoken language production in adults: examining age-related differences in syntactic complexity. Clin Linguist Phon. 2014;28(3):195–207.

    PubMed 

    Google Scholar
     

  • 44.

    Kemper S, Sumner A. The structure of verbal abilities in young and older adults. Psychol Aging. 2001;16(2):312–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Sung JE. Age-related changes in sentence production abilities and their relation to working-memory capacity: evidence from a verb-final language. PLoS One. 2015;10(4):e0119424.

  • 46.

    Kemper S, Thompson M, Marquis J. Longitudinal change in language production: effects of aging and dementia on grammatical complexity and semantic content. 2001.

  • 47.

    Kemper S, Herman R, Lian C. Age differences in sentence production. J Gerontol B Psychol Sci Soc Sci. 2003;58(5):P260–8.

    PubMed 

    Google Scholar
     

  • 48.

    Pakhomov S, Chacon D, Wicklund M, Gundel J. Computerized assessment of syntactic complexity in Alzheimer’s disease: a case study of Iris Murdoch’s writing. Behav Res Methods. 2011;43(1):136–44.

    PubMed 

    Google Scholar
     

  • 49.

    Illes J. Neurolinguistic features of spontaneous language production dissociate three forms of neurodegenerative disease: Alzheimer’s, Huntington’s, and Parkinson’s. Brain Lang. 1989;37(4):628–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Bates E, Harris C, Marchman V, Wulfeck B, Kritchevsky M. Production of complex syntax in normal ageing and Alzheimer’s disease. Lang Cognit Process. 1995;10(5):487–539.


    Google Scholar
     

  • 51.

    Sand Aronsson F, Kuhlmann M, Jelic V, Östberg P. Is cognitive impairment associated with reduced syntactic complexity in writing? Evidence from automated text analysis. Aphasiology. 2020:1–14.

  • 52.

    Snowdon DA, Kemper SJ, Mortimer JA, Greiner LH, Wekstein DR, Markesbery WR. Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: findings from the nun study. JAMA. 1996;275(7):528–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Kemper S, Greiner LH, Marquis JG, Prenovost K, Mitzner TL. Language decline across the life span: findings from the nun study. Psychol Aging. 2001;16(2):227.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Klusek J, Porter A, Abbeduto L, Adayev T, Tassone F, Mailick MR, et al. Curvilinear association between language disfluency and FMR1 CGG repeat size across the normal, intermediate, and premutation range. Frontiers in Genetics. 2018;9(344).

  • 55.

    Mailick MR, Hong J, Greenberg J, Smith L, Sherman S. Curvilinear association of CGG repeats and age at menopause in women with FMR1 premutation expansions. American Journal of Medical Genetics: Part B. 2014;165(8):705–11.

    CAS 

    Google Scholar
     

  • 56.

    Abbeduto L, Thurman AJ, McDuffie A, Klusek J, Feigles RT, Brown WT, et al. ASD comorbidity in fragile X syndrome: symptom profile and predictors of symptom severity in adolescent and young adult males. J Autism Dev Disord. 2019;49(3):960–77.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Roberts JE, Crawford H, Will EA, Hogan AL, McQuillin S, Tonnsen BL, et al. Infant social avoidance predicts autism but not anxiety in fragile X syndrome. Front Psych. 2019;10:199.


    Google Scholar
     

  • 58.

    Abidin R. Parenting Stress Index 4th Edition Short Form (PSI-4-SF). Odessa, FL: Psychological Assessment Resources; 2012.

  • 59.

    Magaña AB, Goldstein MJ, Karno M, Miklowitz DJ, Jenkins J, Falloon IR. A brief method for assessing expressed emotion in relatives of psychiatric patients. Psychiatry Res. 1986;17(3):203–12.

    PubMed 

    Google Scholar
     

  • 60.

    Movaghar A, Mailick M, Sterling A, Greenberg J, Saha K. Automated screening for Fragile X premutation carriers based on linguistic and cognitive computational phenotypes. Sci Rep. 2017;7:2674.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Miller JF, Chapman RS. Systematic Analysis of Language Transcripts (SALT) Madison, WI: University of Wisconsin-Madison, Waisman Center; 2008. p. Computer Software.

  • 62.

    McNamara DS, Graesser AC, McCarthy PM, Cai Z. Automated evaluation of text and discourse with Coh-Metrix: Cambridge University Press; 2014.

  • 63.

    Brill E. A simple rule-based part of speech tagger. PENNSYLVANIA UNIV PHILADELPHIA DEPT OF COMPUTER AND INFORMATION SCIENCE; 1992.

  • 64.

    Graesser AC, McNamara DS, Louwerse MM, Cai Z. Coh-Metrix: analysis of text on cohesion and language. Behav Res Methods Instrum Comput. 2004;36(2):193–202.

    PubMed 

    Google Scholar
     

  • 65.

    McNamara DS, Graesser AC, Cai Z, Kulikowich JM, editors. Coh-Metrix easability components: aligning text difficulty with theories of text comprehension. annual meeting of the American Educational Research Association, New Orleans, LA; 2011.

  • 66.

    Graesser AC, McNamara DS, Kulikowich JM. Coh-Metrix: providing multilevel analyses of text characteristics. Educ Res. 2011;40(5):223–34.


    Google Scholar
     

  • 67.

    Adayev T, LaFauci G, Dobkin C, Caggana M, Wiley V, Field M, et al. Fragile X protein in newborn dried blood spots. BMC Med Genet. 2014;15(1):119.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Chen L, Hadd A, Sah S, Filipovic-Sadic S, Krosting J, Sekinger E, et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. Journal of Molecular Diagnostics. 2010;12(5):589–600.

    CAS 

    Google Scholar
     

  • 69.

    Brayne C, Ince PG, Keage HAD, McKeith IG, Matthews FE, Polvikoski T, et al. Education, the brain and dementia: neuroprotection or compensation?: EClipSE Collaborative Members. Brain. 2010;133(8):2210–6.

    PubMed 

    Google Scholar
     

  • 70.

    Ardila A, Rosselli M. Spontaneous language production and aging: sex and educational effects. Int J Neurosci. 1996;87(1–2):71–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Bailey DB, Sideris J, Roberts J, Hatton D. Child and genetic variables associated with maternal adaptation to fragile X syndrome: a multidimensional analysis. Am J Med Genet A. 2008;146A:720–9.

    PubMed 

    Google Scholar
     

  • 72.

    Pardon M-C, Rattray I. What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev. 2008;32(6):1103–20.

    PubMed 

    Google Scholar
     

  • 73.

    Raudenbush SW, Bryk AS. Hierarchial linear models: applications and data analysis methods: Sage Publications 2002.

  • 74.

    Enders CK. Applied missing data analysis: Guilford Press; 2010.

  • 75.

    Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997:983–97.

  • 76.

    Louis ED, Barnes LF, Wendt KJ, Albert SM, Pullman SL, Yu Q, et al. Validity and test-retest reliability of a disability questionnaire for essential tremor. Mov Disord. 2000;15(3):516–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Rohrer JD, Knight WD, Warren JE, Fox NC, Rossor MN, Warren JD. Word-finding difficulty: a clinical analysis of the progressive aphasias. Brain: a journal of neurology. 2008;131(Pt 1):8–38.

  • 78.

    Fuh J-L, Wang S-J, Lee S-J, Lu S-R, Juang K-D. A longitudinal study of cognition change during early menopausal transition in a rural community. Maturitas. 2006;53(4):447–53.

    PubMed 

    Google Scholar
     

  • 79.

    Thilers PP, MacDonald SWS, Nilsson L-G, Herlitz A. Accelerated postmenopausal cognitive decline is restricted to women with normal BMI: longitudinal evidence from the Betula project. Psychoneuroendocrinology. 2010;35(4):516–24.

    PubMed 

    Google Scholar
     

  • 80.

    Berent-Spillson A, Persad CC, Love T, Sowers M, Randolph JF, Zubieta J-K, et al. Hormonal environment affects cognition independent of age during the menopause transition. J Clin Endocrinol Metab. 2012;97(9):E1686–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Silva F, Rodriguez-Revenga L, Madrigal I, Alvarez-Mora MI, Oliva R, Milà M. High apolipoprotein E4 allele frequency in FXTAS patients. Genet Med. 2013;15(8):639–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Perneczky R, Kempermann G, Korczyn AD, Matthews FE, Ikram MA, Scarmeas N, et al. Translational research on reserve against neurodegenerative disease: consensus report of the International Conference on Cognitive Reserve in the Dementias and the Alzheimer’s Association Reserve, Resilience and Protective Factors Professional Interest Area working groups. BMC Med. 2019;17(1):1–15.

  • 83.

    Akinyemi R, Mukaetova-Ladinska E, Attems J, Ihara M, Kalaria R. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer’s disease and vascular dementia. Curr Alzheimer Res. 2013;10(6):642–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci. 2015;9:58.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Marras C, Canning CG, Goldman SM. Environment, lifestyle, and Parkinsonʼs disease: implications for prevention in the next decade. Mov Disord. 2019;34(6):801–11.

    PubMed 

    Google Scholar
     

  • 86.

    Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. The Lancet. 2017;390(10113):2673–734.


    Google Scholar
     

  • 87.

    Fratiglioni L, Qiu C. Prevention of common neurodegenerative disorders in the elderly. Exp Gerontol. 2009;44(1):46–50.

    PubMed 

    Google Scholar
     

  • 88.

    Hartley SL, Seltzer MM, Hong J, Greenberg JS, Smith L, Almeida D, et al. Cortisol response to behavior problems in FMR1 premutation mothers of adolescents and adults with fragile X syndrome: a diathesis-stress model. Int J Behav Dev. 2012;36:53–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Smith LE, Seltzer MM, Greenberg JS. Daily health symptoms of mothers of adolescents and adults with fragile X syndrome and mothers of adolescents and adults with autism spectrum disorder. J Autism Dev Disord. 2012;42(9):1836–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Kraan CM, Bui QM, Field M, Archibald AD, Metcalfe SA, Christie LM, et al. FMR1 allele size distribution in 35,000 males and females: a comparison of developmental delay and general population cohorts. Genet Med. 2018.

  • 91.

    West EA, Travers JC, Kemper TD, Liberty LM, Cote DL, McCollow MM, et al. Racial and ethnic diversity of participants in research supporting evidence-based practices for learners with autism spectrum disorder. The Journal of Special Education. 2016;50(3):151–63.


    Google Scholar
     

  • 92.

    Johnson VA, Edwards KKA, Sherman SL, Stephens LD, Deer-Smith MH. Decisions to participate in fragile X and other genomics-related research: Native American and African Am

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)