• Alaska Volcano Observatory, National Weather Service, Federal Aviation Administration (2017) Department of Defense, United States Coast Guard, Division of Homeland Security and Emergency Management, Alaska Department of Environmental Conservation, and Alaska Department of Health and Social Services (participating agencies). Alaska interagency operating plan for volcanic ash episodes, p 81 https://avo.alaska.edu/pdfs/cit3996_2017.pdf

  • Allard P, Baxter P, Halbwachs M, Kasereka M, Komorowski JC, Joron JL (2003) The most destructive effusive eruption in modern history: Nyiragongo (RD Congo), January 2002. European geophysical society, XXXVIII general assembly, Nice, France, April 2003. Geophys Res Abst 5:11970


    Google Scholar
     

  • Andreastuti S, Subandriyo J, Sumarti S, Sayudi D (2015) The importance of communication in hazard zone areas: case study during and after 2010 Merapi eruption, Indonesia. In: Loughlin SC, Sparks RSJ, Brown SF, Jenkins SF, Vye-Brown C (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge, pp 267–271. https://doi.org/10.1017/CBO9781316276273.012

    Chapter 

    Google Scholar
     

  • Annelli JF (2006) The national incident management system: a multi-agency approach to emergency response in the United States of America. Rev Sci Tech 25(1):223–231

    Article 

    Google Scholar
     

  • Asgary A, Bonadonna C, Frischknecht C (2020) Simulation and visualization of Volcanic phenomena using Microsoft Hololens: case of Vulcano Island (Italy). IEEE Trans Eng Manag 67(3):545–553. https://doi.org/10.1109/TEM.2019.2932291

    Article 

    Google Scholar
     

  • Aspinall W, Cooke RM (1998) Expert judgement and the Montserrat volcano eruption. In: Mosleh A (ed) Proceedings of the 4th international conference on probabilistic safety assessment and management. Springer, London, PSAM4 3, pp 13–18


    Google Scholar
     

  • Balagizi MC, Mavonga G, Kasereka MM, Liotta M, Manzo M, Lanari R, Bonano M, De Luca C, Onorato G, Lukindula J, Ganci G, Del Negro C, Cappello A, Coltelli M, Mattia M, Coppola D, Durrheim RJ, Mukambilwa P, Kyambikwa A, Mashagiro N, Ciraba H, Lowenstern JB, Kelly PJ, McCausland WA, Kies A (2020) Virunga Volcanoes Supersite Biennial Report: 2017–2019. https://doi.org/10.5281/zenodo.3911065

    Book 

    Google Scholar
     

  • Balagizi MC, Yalire MM, Ciraba MH, Vicky BK, Minani SA, Kinja KA, Kasereka MM (2016) CO2 and SO2 emissions, temperature variations and field observations before and after the February 29, 2016 new vent inside Nyiragongo crater. Bull Volcanol 78:64. https://doi.org/10.1007/s00445-016-1055-y

    Article 

    Google Scholar
     

  • Barberi F, Zuccaro G (2004) SOMMA VESUVIUS MESIMEX, Final Technical Implementation Report. https://ec.europa.eu/echo/files/civil_protection/civil/prote/pdfdocs/mesimex.pdf. Accessed 25 Nov 2020

  • Barsotti S (2020) Probabilistic hazard maps for operational use: the case of SO2 air pollution during the Holuhraun eruption (Bárðarbunga, Iceland) in 2014–2015. Bull Volcanol 82(56)

  • Barsotti S, Di Rienzo DI, Thordarson T, Björnsson BB, Karlsdóttir S (2018) Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Front Earth Sci 6:196. https://doi.org/10.3389/feart.2018.00196

    Article 

    Google Scholar
     

  • Barsotti S, Oddsson B, Gudmundsson MT, Pfeffer MA, Parks MM, Ófeigsson BG, Sigmundsson F, Reynisson V, Jónsdóttir K, Roberts MJ, Heiðarsson EP, Jónasdóttir EB, Einarsson P, Jóhannsson T, Gylfason ÁG, Vogfjörd K (2020) Operational response and hazards assessment during the 2014–2015 volcanic crisis at Bárðarbunga volcano and associated eruption at Holuhraun. Iceland J Volcanol Geotherm Res 390:106753. https://doi.org/10.1016/j.jvolgeores.2019.106753

    Article 

    Google Scholar
     

  • Bartel B, Bohon W, Frank L, Stovall W, Poland M (2020). Communicating Geohazard: delivering information in crisis and calm. Unavco, p 31. https://www.unavco.org/about/organization/education-and-community-engagement/publications-internal-reports-and-white-papers/CommunicatingGeohazards2019Handbook.pdf. Accessed 25 Nov 2020

  • Baxter P, Ancia A (2002) Human health and vulnerability in the Nyiragongo volcano eruption and humanitarian crisis at Goma, Democratic Republic of Congo, final report to the World Health Organization. https://reliefweb.int/report/democratic-republic-congo/human-health-and-vulnerability-nyiragongo-volcano-crisis-dr-congo. Accessed 25 Nov 2020

  • Beauducel F, Lafon D, Béguin X, Saurel J-M, Bosson A, Mallarino D, Boissier P, Brunet C, Lemarchand A, Anténor-Habazac C, Nercessian A, Fahmi AA (2020) WebObs: the volcano observatories missing link between research and real-time monitoring. Front. Earth Sci 8(48). https://doi.org/10.3389/feart.2020.00048

  • Bernard B (2013) Homemade ashmeter: a low-cost, high-efficiency solution to improve tephra field-data collection for contemporary explosive eruptions. J Appl Volc 2:1. https://doi.org/10.1186/2191-5040-2-1

    Article 

    Google Scholar
     

  • Bernard B, Stock MJ, Coppola D, Hidalgo S, Bagnardi M, Gibson S, Hernandez S, Ramón P, Gleeson M (2019) Chronology and phenomenology of the 1982 and 2015 wolf volcano eruptions, Galápagos archipelago. J Volcanol Geotherm Res 374:26–38. https://doi.org/10.1016/j.jvolgeores.2019.02.013

    Article 

    Google Scholar
     

  • Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Spec Public IAVCEI; 1. Geol Soc, London, pp 243–259


    Google Scholar
     

  • Bonforte A, Guglielmino F, Puglisi G (2019) Large dyke intrusion and small eruption: the December 24, 2018 Mt. Etna eruption imaged by Sentinel-1 data. Terra Nova 31:405–412. https://doi.org/10.1111/ter.12403

    Article 

    Google Scholar
     

  • Bretton RJ, Ciolli S, Cristiani C, Gottsmann J, Christie R, Aspinall W (2018) Volcanic unrest simulation exercises: Checklists and guidance notes. In: Gottsmann J, Neuberg J, Scheu B (eds) Volcanic Unrest. Advances in Volcanology. Springer, pp 271–298. https://doi.org/10.1007/11157_2018_34

  • Calder E, Wagner K, Ogburn S (2015) Volcanic hazard maps. In: Volcanic G (ed) S Loughlin, S Sparks, S Brown, S Jenkins C Vye-Brown. Cambridge University Press, Hazards and Risk, pp 335–342


    Google Scholar
     

  • Camejo M, Robertson R (2013) Estimating volcanic risk in the Lesser Antilles: Univ West Indies seismic res Centre, SRC open-file report 2013-1001 p 49. Available on Vhub. https://vhub.org/resources/2910/download/RiskReport.pdf. Accessed on 25 Nov 2020


    Google Scholar
     

  • Carn SA, Pallister JS, Lara L, Ewert JW, Watt S, Prata AJ, Thomas RJ, Villarosa G (2009) The unexpected awakening of Chaitén volcano, Chile. EOS Trans Am Geophys Union 90:205–206

    Article 

    Google Scholar
     

  • Ciolli S, Andrade D, Ruiz M, Cristiani C (2014) VUELCO-Cotopaxi Volcano Exercise- Debriefing. Report.:9. https://doi.org/10.13140/RG.2.2.29651.58406

  • Coombs ML, Wech AG, Haney MM, Lyons JJ, Schneider DJ, Schwaiger HF, Wallace KL, Fee D, Freymueller JT (2018) Schaefer JR and Tepp G (2018) short-term forecasting and detection of explosions during the 2016–2017 eruption of Bogoslof volcano, Alaska. Front Earth Sci 6:122. https://doi.org/10.3389/feart.2018.00122

    Article 

    Google Scholar
     

  • Costa F, Widiwijayanti C, Humaida H (2019) Data from past eruptions could reduce future volcano hazards. Eos 100. https://doi.org/10.1029/2019EO118941

  • Crosweller HS, Arora B, Brown SK et al (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:4. https://doi.org/10.1186/2191-5040-1-4

    Article 

    Google Scholar
     

  • Doyle EEH, Paton D, Johnston DM (2015) Enhancing scientific response in a crisis: evidence based approaches from emergency management in New Zealand. J Appl Volcanol 4(1):26. https://doi.org/10.1186/s13617-014-0020-8

    Article 

    Google Scholar
     

  • Driedger C, Neal CA, Knappenberger TH, Needham DH, Harper RB, Steele WP (2008) Hazard information management during the autumn 2004 reawakening of Mount St. Helens Volcano, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, U.S. Geol Surv Prof Paper 1750, https://pubs.usgs.gov/pp/1750/, pp 505–519


    Google Scholar
     

  • Esposti Ongaro T, Neri A, Menconi G, de’Michieli Vitturi M, Marianelli M, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geotherm Res 178:378–396

    Article 

    Google Scholar
     

  • Ewert JW, Diefenbach AK, Ramsey DW (2018) Update to the U.S. Geological Survey national volcanic threat assessment. U.S. Geol Surv Sci Invest Report 2018–5140, p 40. https://doi.org/10.3133/sir20185140

    Book 

    Google Scholar
     

  • Ewert JW, Guffanti M, Murray TL (2005) An assessment of volcanic threat and monitoring capabilities in the United States—Framework for a National Volcano Early Warning System. U.S. Geol Surv Open-File Report 2005–1164, p 62


    Google Scholar
     

  • Fearnley C (2013) Assigning a volcano alert level: negotiating uncertainty, risk, and complexity in decision-making processes. Environ Plan 45:1891–1911

    Article 

    Google Scholar
     

  • Fearnley C, Winson AEG, Pallister J, Tilling R (2017) Volcano crisis communication: challenges and solutions in the twenty-first century. In: Fearnley CJ, Bird DK, Haynes K, WJ MG, Jolly G (eds) Observing the volcano world; advances in volcanology (an official book series of the International Association of Volcanology and Chemistry of the Earth’s interior – IAVCEI, Barcelona, Spain). Springer, Cham. https://doi.org/10.1007/11157_2017_28

    Chapter 

    Google Scholar
     

  • Fee D, Lyons J, Haney M, Wech A, Waythomas C, Diefenbach AL, Lopez T, Van Eaton A, Schneider D (2020) Seismo-acoustic evidence for vent drying during shallow submarine eruptions at Bogoslof volcano, Alaska. Bull Volcanol 82(1):2. https://doi.org/10.1007/s00445-019-1326-5

    Article 

    Google Scholar
     

  • FEMA (2017) (2017) National Incident Management System, 3rd Edition, p 123 https://www.fema.gov/sites/default/files/2020-07/fema_nims_doctrine-2017.pdf


    Google Scholar
     

  • Fiske RS (1984) Volcanologists, journalists, and the concerned public: a tale of two crises in the eastern Caribbean, in explosive volcanism: inception, evolution, and hazards. National Academy Press, Washington, D.C, pp 170–176


    Google Scholar
     

  • Francis P, Rothery D (2000) Remote sensing of active volcanoes. Annu Rev Earth Planet Sci 28(1). https://doi.org/10.1146/annurev.earth.28.1.81

  • Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hildago S (2010) Network for observation of volcanic and atmospheric change (NOVAC) –– a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res, Atm 115(D5). https://doi.org/10.1029/2009JD011823

  • Giampiccolo E, Cocina O, De Gor P et al (2020) Dyke intrusion and stress-induced collapse of volcano flanks: the example of the 2018 event at Mt. Etna (Sicily, Italy). Sci Rep 10:6373. https://doi.org/10.1038/s41598-020-63371-3

    Article 

    Google Scholar
     

  • Gíslason SR, Stefánsdóttir G, Pfeffer MA, Barsotti S, Jóhannsson T, Galeczka I, Bali E, Sigmarsson O, Stefánsson A, Keller NS, Sigurdsson Á, Bergsson B, Galle B, Jacobo VC, Arellano S, Aiuppa A, Jónasdóttir EB, Eiríksdóttir ES, Jakobsson S, Gudmundsson MT (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem Perspectives Lett 1(0):84–93. https://doi.org/10.7185/geochemlet.1509

    Article 

    Google Scholar
     

  • Global Volcanism Program. Volcanoes of the World, v. 4.9.0 (2013) (04 Jun 2020). Venzke, E (ed.). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013

  • Gudmundsson MT, Jónsdóttir K, Hooper A, Holohan EP, Halldórsson SA, Ófeigsson BG, Cesca S, Vogfjörd KS, Sigmundsson F, Högnadóttir T (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353(6296):aaf8988. https://doi.org/10.1126/science.aaf8988

    Article 

    Google Scholar
     

  • Hall M, Ramón P, Mothes P, LePennec J, García A, Sanmiego P, Yepes H (2004) Volcanic eruptions with little warning: the case of Volcán Reventador’s surprise November 3, 2002 eruption. Ecuador Revista Geológica Chile 31(2):349–358


    Google Scholar
     

  • Harnett CE, Thomas ME, Calder ES et al (2019) Presentation and analysis of a worldwide database for lava dome collapse events: the global archive of dome instabilities (GLADIS). Bull Volcanol 81:16. https://doi.org/10.1007/s00445-019-1276-y

    Article 

    Google Scholar
     

  • Hidalgo S, Battaglia J, Arellano S, Sierra D, Bernard B, Parra R, Kelly P, Dinger F, Barrington C, Samaniego P (2018) Evolution of the 2015 Cotopaxi eruption revealed by combined geochemical and seismic observations. Geochem Geophys Geosys 19:2087–2108. https://doi.org/10.1029/2018GC007514

    Article 

    Google Scholar
     

  • IAVCEI Subcommittee for Crisis Protocols (Newhall C, Aramaki S, Barberi F, Blong R, Calvache M, Cheminee J-L, Punongbayan R, Siebe C, Simkin T, Sparks RSJ, Tjetjep W) (1999). Professional conduct of scientists during volcanic crises. Bull Volcanol 60:323–334

    Article 

    Google Scholar
     

  • IAVCEI Task Group on Crisis Protocols (Giordano G, Bretton R, Calder E, Cas R, Gottsmann J, Lindsay J, Newhall C, Pallister J, Papale P, Rodriguez L) (2016) Toward IAVCEI guidelines on the roles and responsibilities of scientists involved in volcanic hazard evaluation, risk mitigation, and crisis response. Bull Volcanol 78(31):3. https://doi.org/10.1007/s00445-016-1021-8

    Article 

    Google Scholar
     

  • INGV (2012). Annex A to the Framework Agreement between the Department of Civil Protection and the National Institute of Geophysics and Volcanology for seismic and volcanic surveillance on the national territory, technical-scientific advice and studies on seismic and volcanic risks (decade 2012–2021). In Italian. http://istituto.ingv.it/l-ingv/progetti/allegati-convenzioni-dpc/allegati-convenzione-quadro-2012-2021/accordo-quadro-2012-2021-allegato%20A.pdf. Accessed 25 Nov 2020

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110(8):972–984

    Article 

    Google Scholar
     

  • Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71:1057–1075. https://doi.org/10.1007/s00445-009-0286-6

    Article 

    Google Scholar
     

  • Komorowski JC, Tedesco D, Kasereka MC, Allard P, Papale P, Vaselli O, Durieux J et al (2003) The January 2002 flank eruption of Nyiragongo volcano (Democratic Republic of Congo): chronology, evidence for a tectonic rift trigger, and impact of lava flows on the city of Goma. Acta Vulcanol 15(1–2):27–62


    Google Scholar
     

  • Lara LE, Clavero J, Hinojosa M, Huerta S, Wall R, Moreno H (2006) NVEWS-Chile—Sistema de clasifcación semicuantitativa de la vulnerabilidad volcánica: Congreso Geológico Chileno. Antofagasta, Chile 11(2):487–490


    Google Scholar
     

  • Leonard GS, Johnson DM, Paton D, Christianson A, Becker J, Keys H (2008) Developing effective warning systems: ongoing research at Ruapehu volcano, New Zealand. J Volc Geothermal Res 172(3–4):199–215. https://doi.org/10.1016/j.jvolgeores.2007.12.008

    Article 

    Google Scholar
     

  • Lowenstern JB, Ramsey DW (2017) The Volcano Disaster Assistance Program—Helping to save lives worldwide for more than 30 years. U.S. Geol Surv:2017–30716. https://doi.org/10.3133/fs20173071

  • Marti J, Aspinall W, Sobradelo R, Felpeto A, Geyer A, Ortiz R, Baxter P, Cole P, Pacheco J, Blanco MJ (2008) Lopez C (2008) a long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 178:543–552. https://doi.org/10.1016/j.jvolgeores.2008.09.023

    Article 

    Google Scholar
     

  • Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. https://doi.org/10.1007/s00445-007-0157-y

    Article 

    Google Scholar
     

  • Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–16. https://doi.org/10.1007/s00445-010-0357-8

  • Marzocchi W, Sandri L, Gasparini P, Newhall CG, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res:109–B11201. https://doi.org/10.1029/2004JB003155

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21. https://doi.org/10.1016/j.jvolgeores.2009.01.008

    Article 

    Google Scholar
     

  • McCausland WA, Pallister JS, Andreastutti S, Gunawan H, Hendrasto M, Kasbani, Iguchi M, Nakada S (eds special issue 2019) Lessons learned from the recent eruptions of Sinabung and Kelud volcanoes, Indonesia. J Volc Geotherm Res 382: 1–310

  • Miller CA (2010) Threat assessment of New Zealand’s volcanoes and their current and future monitoring requirements Lower Hutt, N.Z.: GNS science. GNS Sci Rep 2011(55):45 http://shop.gns.cri.nz/sr_2010-055-pdf/


    Google Scholar
     

  • Miller CA, Jolly AD (2014) A model for developing best practice volcano monitoring: a combined threat assessment, consultation and network effectiveness approach. Nat Hazards 71:493–522. https://doi.org/10.1007/s11069-013-0928-z

  • Ministry of Civil Defence and Emergency Management (2008) Exercise Ruaumoko 08, Final Exercise Report. https://dpmc.govt.nz/sites/default/files/2019-11/dpmc-roiar-oia-2019-20-0222-exercise-ruaumoko-final-report.pdf


    Google Scholar
     

  • Moran SC, Freymueller JT, LaHusen RG, McGee KA, Poland MP, Power JA, Schmidt DA, Schneider DJ, Stephens G, Werner CA, White RA (2008) Instrumentation recommendations for volcano monitoring at U.S. volcanoes under the National Volcano Early Warning System: U.S. Geol Surv Sci Investig Rep 2008:5114 47


    Google Scholar
     

  • Mothes P, Espín P, Hall ML, Vásconez F, Sierra D, Andrade D (2016b) Mapa Regional de Amenazas Volcánicas Potenciales del Volcán Cotopaxi – Zona Norte 2016. https://doi.org/10.13140/RG.2.2.21035.03363

    Book 

    Google Scholar
     

  • Mothes P, Espín P, Hall ML, Vásconez F, Sierra D, Córdova M, Santamaría S (2016a) Mapa Regional de Amenazas Volcánicas Potenciales del Volcán Cotopaxi – Zona Sur. https://doi.org/10.13140/RG.2.2.24498.61129

    Book 

    Google Scholar
     

  • Mothes PA, Ruiz MC, Viracucha EG, Ramón PA, Hernández S, Hidalgo S, Bernard B, Gaunt EH, Jarrín P, Yépez MA, Espín PA (2019) Geophysical footprints of Cotopaxi’s unrest and minor eruptions in 2015: an opportunity to test scientific and community preparedness. In: Gottsmann J, Neuberg J, Scheu B (eds) Volcanic Unrest : from science to society. Springer International Publishing, Champ, pp 241–270


    Google Scholar
     

  • Muñoz J, Moreno H (2010) From Chaitén to the Chilean volcano monitoring network. AGU Fall Meeting 2010 V21D-2353

  • Nakada S, Miyagi Y, Kubo T, Fujita E (2019) Conveying volcano information effectively to stakeholders—a new project for promotion of next generation volcano research. J Disaster Res 14(4):623–629

    Article 

    Google Scholar
     

  • Neal CA et al (2019) The 2018 rift eruption and summit collapse of Kīlauea volcano. Science. 363(6425):367–374. https://doi.org/10.1126/science.aav7046

    Article 

    Google Scholar
     

  • Newhall C, Hoblitt R (2002) Constructing event trees for volcanic crises. Bull Volcanol 64(1):3–20. https://doi.org/10.1007/s004450100173

    Article 

    Google Scholar
     

  • Newhall C, Pallister JS, Miller CD (2020) A checklist for crisis operations within volcano observatories, Volcanic hazards, risks and disasters. In: Papale P (ed) Forecasting and planning for Volcanic hazards, risks, and disasters, chapter 13. Elsevier, pp 493–544. https://doi.org/10.1016/B978-0-12-818082-2.00013-5

    Chapter 

    Google Scholar
     

  • Newhall CG, Costa F, Ratdomopurbo A, Venezky DY, Widiwijayanti C, Win NTZ, Tan K, Fajiculay E (2017) WOVOdat — an online, growing library of worldwide volcanic unrest. J Volcanol Geotherm Res 345:184–199. https://doi.org/10.1016/j.jvolgeores.2017.08.003

    Article 

    Google Scholar
     

  • Ogburn SE, Loughlin SC, Calder ES (2012) DomeHaz: dome-forming eruptions database v2.4. https://vhub.org/groups/domedatabase


    Google Scholar
     

  • ONEMI (Chile) (2018) Plan específico de emergencia por variable de riesgo: Erupciones Volcánicas, p 46 https://www.onemi.gov.cl/wp-content/uploads/2018/09/PEEVR_ERUPCIONES-VOLCÁNICAS_01.02.18.pdf


    Google Scholar
     

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. https://doi.org/10.1007/s00445-003-0336-4

    Article 

    Google Scholar
     

  • Pallister J, Papale P, Eichelberger J, Newhall C, Mandeville C, Nakada S, Marzocchi W, Loughlin S, Jolly G, Ewert J, Selva J (2019) Volcano observatory best practices (VOBP) workshops – a summary of findings and best-practice recommendations. J App Volcanol 8(2):33. https://doi.org/10.1186/s13617-019-0082-8

    Article 

    Google Scholar
     

  • Papale P (2017) Rational volcanic hazard forecasts and the use of volcanic alert levels. J Appl Volcanol 6:13. https://doi.org/10.1186/s13617-017-0064-7

    Article 

    Google Scholar
     

  • Pedersen G, Höskuldsson A, Dürig T, Thordarson T, Jonsdottir I, Riishuus MS, Óskarsson BV, Dumont S, Magnússon E, Gudmundsson MT (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm Res 340:155–169. https://doi.org/10.1016/j.jvolgeores.2017.02.027

    Article 

    Google Scholar
     

  • Perry RW (2003) Incident management systems in disaster management. Disaster Prev Manag 12(5):405–412. https://doi.org/10.1108/09653560310507226

    Article 

    Google Scholar
     

  • Pfeffer M, Bergsson B, Barsotti S, Stefánsdóttir G, Galle B, Arellano S, Conde V, Donovan A, Ilyinskaya E, Burton M (2018) Ground-based measurements of the 2014–2015 Holuhraun Volcanic cloud (Iceland). Geosciences 8(1):29. https://doi.org/10.3390/geosciences8010029

    Article 

    Google Scholar
     

  • Pierson TC, Driedger CL, Tilling RI (2013) Volcano crisis response at Yellowstone volcanic complex—after-action report for exercise held at Salt Lake City, Utah, November 15, 2011: U.S. Geol Surv Open-File Report 2013–1018, p 31 http://pubs.usgs.gov/of/2013/1018/


    Google Scholar
     

  • Poland MP, Lopez T, Wright R et al (2020) Forecasting, detecting, and tracking Volcanic eruptions from space. Remote Sens Earth Syst Sci 3:55–94. https://doi.org/10.1007/s41976-020-00034-x

    Article 

    Google Scholar
     

  • Potter SH, Scott BJ, Fearnley CJ, Leonard GS, Gregg CE (2017) Challenges and benefits of Standardising early warning systems: a case study of New Zealand’s Volcanic alert level system. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) Observing the volcano world. Advances in Volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior – IAVCEI, Barcelona, Spain). Springer, Cham. https://doi.org/10.1007/11157_2017_18

    Chapter 

    Google Scholar
     

  • Ramón P (1979) Tecnología y aplicación de instrumentos geofísicos en el volcanismo, ensayos en el volcán Cotopaxi. Graduate thesis, EPN, Quito-Ecuador, p 97


    Google Scholar
     

  • Re CRA, D’Oriano C, Pompilio M (2021) Petrological monitoring of active volcanoes: a review of existing procedures to achieve best practices and operative protocols during eruptions. J Volc Geotherm Res 419:107365. https://doi.org/10.1016/j.jvolgeores.2021.107365

    Article 

    Google Scholar
     

  • Reath K, Pritchard M, Poland M et al (2019) Thermal, deformation, and degassing remote sensing time series (CE 2000–2017) at the 47 most active volcanoes in Latin America: implications for Volcanic systems. J Geophys Res Solid Earth. https://doi.org/10.1029/2018JB016199

  • Sandri L, Costa A, Selva J, Tonini R, Macedonio G, Folch A, Sulpizio R (2016) Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes. Sci Rep 6:24271. https://doi.org/10.1038/srep24271

    Article 

    Google Scholar
     

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic field, New Zealand. Bull Volcanol 74:705–723. https://doi.org/10.1007/s00445-011-0556-y

    Article 

    Google Scholar
     

  • Sarsito DA, Kriswati E, Meilano I, Andreas H, Pradipta D (2019) Volcano deformation monitoring using geodetic method: optimal network design. IOP Con Ser: Earth Enviro Sci 389:012039


    Google Scholar
     

  • Sennert SSK, Klemetti EW, Bird DK (2015) Role of social media and networking in volcanic crises and communication. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) Observing the volcano world; advances in volcanology (an official book series of the International Association of Volcanology and Chemistry of the Earth’s interior – IAVCEI, Barcelona). Springer, Cham, pp 733–743. https://doi.org/10.1007/11157_2015_13

    Chapter 

    Google Scholar
     

  • Shimano T, Nishimura T, Chiga N, Shibasaki Y, Iguchi M, Miki D, Yokoo A (2013) Development of an automatic volcanic ash sampling apparatus for active volcanoes. Bull Volcanol 75:773. https://doi.org/10.1007/s00445-013-0773-7

    Article 

    Google Scholar
     

  • Sigmundsson F, Hooper A, Hreinsdóttir S, Vogfjörd KS, Ófeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB (2015) Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system. Iceland Nature 517(7533):191–195. https://doi.org/10.1038/nature14111

    Article 

    Google Scholar
     

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210(1–2):1–15

    Article 

    Google Scholar
     

  • Surono et al. (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241–241, p 121–135. https://doi.org/10.1016/j.jvolgeores.2012.06.018

  • Syahbana D et al (2019) The 2017–19 activity at mount Agung in Bali (Indonesia): intense unrest, monitoring, crisis response, evacuation, and eruption. Sci Reports 9:8848. https://doi.org/10.1038/s41598-019-45295-9

    Article 

    Google Scholar
     

  • Tarquini S, de’Michieli Vitturi M, Jensen E, Pedersen G, Barsotti S, Coppola D, Pfeffer MA (2018) Modeling lava flow propagation over a flat landscape by using MrLavaLoba: the case of the 2014–2015 eruption at Holuhraun, Iceland. Ann Geophys 61:28. https://doi.org/10.4401/ag-7812

    Article 

    Google Scholar
     

  • The Research Group of the Istituto Nazionale di Geofisica e Vulcanologia-Sezione di Catania, Italy (2001) Multidisciplinary approach yields insight into mt. Etna eruption, Eos trans. AGU 82(52):653–656. https://doi.org/10.1029/01EO00376

    Article 

    Google Scholar
     

  • Thompson MA, Lindsay JM, Leonard GS (2017) More than meets the eye: Volcanic Hazard map design and visual communication. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) Observing the volcano world. Advances in Volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior – IAVCEI, Barcelona). Springer, Cham


    Google Scholar
     

  • UNDAC (2018) United Nations disaster assessment coordination (UNDAC) field handbook 7th version 2018; https://www.unocha.org/sites/unocha/files/1823826E_web.pdf


    Google Scholar
     

  • UNDRR (2015). The Sendai Framework for Disaster Risk Reduction 2015–2030. 32 pp. http://www.unisdr.org/we/inform/publications/43291

  • Vásconez F, Sierra D, Almeida M, Andrade D, Marrero JM, Mothes PA, Bernard B, Encalada M (2017) Mapa preliminar de amenazas potenciales del volcán Cotopaxi—Zona oriental. https://doi.org/10.13140/RG.2.2.24418.89280

    Book 

    Google Scholar
     

  • Venezky DY, Newhall CG (2007) WOVOdat Design Document: The Schema, Table Descriptions, and Create Table Statements for the Database of Worldwide Volcanic Unrest (WOVOdat Version 1.0). US Geol Surv Open-File Rep 2007–1117, p 177


    Google Scholar
     

  • Voight B (1990) The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. J Volcanol Geotherm Res 42:151–188

    Article 

    Google Scholar
     

  • (2012) Washington military department emergency management division. Coordinating efforts between governmental agencies in the event of volcanic unrest at mount baker or glacier peak, Washington, p 39 https://volcanoes.usgs.gov/vsc/mount_baker_glacier_peak_coordination_plan.pdf

  • Williams DM, Avery VF, Coombs ML, Cox DA, Horwitz LR, McBride SK, McClymont RJ, Moran SC (2020) U.S. Geological Survey 2018 Kīlauea Volcano eruption response in Hawai’i— After-action review. U.S. Geol Surv Open-File Report 2020–1041, p 56. https://doi.org/10.3133/ofr20201041

    Book 

    Google Scholar
     

  • Witham C, Barsotti S, Dumont S, Oddsson B, Sigmundsson F (2020) Practising an explosive eruption in Iceland: outcomes from a European exercise. J Appl Volcanol 9(1):1–16

    Article 

    Google Scholar
     

  • Wright HNM et al (2019) Construction of probabilistic event trees for eruption forecasting at Sinabung volcano, Indonesia 2013–14. J Volc Geotherm Res 382:233–252

    Article 

    Google Scholar
     

  • Young SR, Voight B, Sparks RSJ, Rowley K, Robertson REA, Lynch LL, Aspinall WP (1998) The Soufriere Hills eruption, Montserrat, British West Indies: introduction to special section, part 2. Geophys Res Lett 25(19):3651. https://doi.org/10.1029/98GS02437

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)