• 1.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article 

    Google Scholar
     

  • 2.

    Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016;11(1):39–51.

    Article 

    Google Scholar
     

  • 4.

    Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–55.

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Allin KH, Bojesen SE, Nordestgaard BG. Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol. 2009;27(13):2217–24. https://doi.org/10.1200/JCO.2008.19.8440 (Epub 2009 Mar 16).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Allin KH, Nordestgaard BG. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci. 2011;48(4):155–70. https://doi.org/10.3109/10408363.2011.599831.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Wang DS, Luo HY, Qiu MZ, Wang ZQ, Zhang DS, Wang FH, et al. Comparison of the prognostic values of various inflammation based factors in patients with pancreatic cancer. Med Oncol. 2012;29(5):3092–100.

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Lorente D, Mateo J, Templeton AJ, Zafeiriou Z, Bianchini D, Ferraldeschi R, et al. Baseline neutrophil-lymphocyte ratio (NLR) is associated with survival and response to treatment with second-line chemotherapy for advanced prostate cancer independent of baseline steroid use. Ann Oncol. 2015;26(4):750–5.

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Koh CH, Bhoo-Pathy N, Ng KL, Jabir RS, Tan GH, See MH, et al. Utility of pre-treatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in breast cancer. Br J Cancer. 2015;113(1):150–8.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Proctor MJ, Talwar D, Balmar SM, O’Reilly DS, Foulis AK, Horgan PG, et al. The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow Inflammation Outcome Study Br J Cancer. 2010;103(6):870–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Shiba H, Misawa T, Fujiwara Y, Futagawa Y, Furukawa K, Haruki K, et al. Glasgow prognostic score predicts outcome after surgical resection of gallbladder cancer. World J Surg. 2015;39(3):753–8.

    Article 

    Google Scholar
     

  • 13.

    Hwang EC, Hwang IS, Yu HS, Kim SO, Il Jung S, Hwang JE, et al. Utility of Inflammation-based Prognostic Scoring in Patients Given Systemic Chemotherapy First-line for Advanced Inoperable Bladder Cancer. Jpn J Clin Oncol. 2012;42(10):955–60.

    Article 

    Google Scholar
     

  • 14.

    Zhang H, Xia H, Zhang L, Zhang B, Yue D, Wang C. Clinical significance of preoperative neutrophil-lymphocyte vs platelet-lymphocyte ratio in primary operable patients with non-small cell lung cancer. Am J Surg. 2015;210(3):526–35. https://doi.org/10.1016/j.amjsurg.2015.03.022 (Epub Jun 1).

    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Jiang T, Bai Y, Zhou F, Li W, Gao G, Su C, et al. Clinical value of neutrophil-to-lymphocyte ratio in patients with non-small-cell lung cancer treated with PD-1/PD-L1 inhibitors. Lung Cancer. 2019;130:76–83.

    Article 

    Google Scholar
     

  • 16.

    Jin J, Hu K, Zhou Y, Li W. Clinical utility of the modified Glasgow prognostic score in lung cancer: A meta-analysis. PLoS ONE. 2017;12(9):e0184412.

    Article 

    Google Scholar
     

  • 17.

    Lu Y, Jiang J, Ren C. The clinicopathological and prognostic value of the pretreatment neutrophil-to-lymphocyte ratio in small cell lung cancer A meta-analysis. PLoS ONE. 2020;15(4):e0230979.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Zhou X, Du Y, Huang Z, Xu J, Qiu T, Wang J, et al. Prognostic value of PLR in various cancers a meta-analysis. PLoS ONE. 2014;9(6):e101119.

    Article 

    Google Scholar
     

  • 19.

    Winther-Larsen A, Aggerholm-Pedersen N, Sandfeld-Paulsen B. Inflammation scores as prognostic biomarkers in small cell lung cancer: a systematic review and meta-analysis. Syst Rev. 2021;10(1):40.

    Article 

    Google Scholar
     

  • 20.

    Sandfeld-Paulsen B, Aggerholm-Pedersen N, Winther-Larsen A. Hyponatremia in lung cancer: Incidence and prognostic value in a Danish population-based cohort study. Lung Cancer. 2021;153:42–8.

    Article 

    Google Scholar
     

  • 21.

    Statistics Denmark. People. Available from https://www.dst.ek/en/Statistik/emner/borgere.

  • 22.

    Jakobsen E, Rasmussen TR. The Danish Lung Cancer Registry. Clin Epidemiol. 2016;8:537–41.

    Article 

    Google Scholar
     

  • 23.

    The Danish Pathology Data Bank. Available from https://www.patobank.dk.

  • 24.

    Arendt JFH, Hansen AT, Ladefoged SA, Sørensen HT, Pedersen L, Adelborg K. Existing Data Sources in Clinical Epidemiology: Laboratory Information System Databases in Denmark. Clin Epidemiol. 2020;12:469–75.

    Article 

    Google Scholar
     

  • 25.

    Schmidt M, Pedersen L, Sørensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541–9.

    Article 

    Google Scholar
     

  • 26.

    Wang X, Jiang R, Li K. Prognostic significance of pretreatment laboratory parameters in combined small-cell lung cancer. Cell Biochem Biophys. 2014;69(3):633–40. https://doi.org/10.1007/s12013-014-9845-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Wen Q, Meng X, Xie P, Wang S, Sun X, Yu J. Evaluation of factors associated with platinum-sensitivity status and survival in limited-stage small cell lung cancer patients treated with chemoradiotherapy. Oncotarget. 2017;8(46):81405–18. https://doi.org/10.18632/oncotarget.9073 (eCollection 2017 Oct 6).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Leung EY, Scott HR, McMillan DC. Clinical utility of the pretreatment glasgow prognostic score in patients with advanced inoperable non-small cell lung cancer. J Thorac Oncol. 2012;7(4):655–62. https://doi.org/10.1097/JTO.0b013e318244ffe1.

    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Sonehara K, Tateishi K, Komatsu M, Yamamoto H, Hanaoka M, Kanda S, et al. Modified Glasgow Prognostic Score as a Prognostic Factor in Patients with Extensive Disease-Small-Cell Lung Cancer: A Retrospective Study in a Single Institute. Chemotherapy. 2019;64(3):129–37.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Liu X, Chen S, Liu J, Xu D, Li W, Zhan Y, et al. Impact of systemic inflammation on gastric cancer outcomes. PLoS ONE. 2017;12(3):e0174085.

    Article 

    Google Scholar
     

  • 31.

    Aggerholm-Pedersen N, Maretty-Kongstad K, Keller J, Safwat A. Serum Biomarkers as Prognostic Factors for Metastatic Sarcoma. Clin Oncol (R Coll Radiol). 2019;31(4):242–9.

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Shen XB, Zhang YX, Wang W, Pan YY. The Hemoglobin Albumin Lymphocyte, and Platelet HALP Score in Patients with Small Cell Lung Cancer Before First-Line Treatment with Etoposide and Progression-Free Survival. Med Sci Monit. 2019;25:5630–9. https://doi.org/10.12659/MSM.917968.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Cao LL, Lu J, Lin JX, Zheng CH, Li P, Xie JW, et al. A novel predictive model based on preoperative blood neutrophil-to-lymphocyte ratio for survival prognosis in patients with gastric neuroendocrine neoplasms. Oncotarget. 2016;7(27):42045–58.

    Article 

    Google Scholar
     

  • 34.

    Sakin A, Yasar N, Arici S, Demir C, Geredeli C, Aksaray F, et al. Effect of Pretreatment Platelet Parameters on Survival in Limited Disease Small Cell Lung Cancer. Asian Pac J Cancer Prev. 2019;20(6):1879–85. https://doi.org/10.31557/APJCP.2019.20.6.1879.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Wang D, Guo D, Shi F, Zhu Y, Li A, Kong L, et al. The predictive effect of the systemic immune-inflammation index for patients with small-cell lung cancer. Future Oncol. 2019;15(29):3367–79. https://doi.org/10.2217/fon-019-0288 (Epub 2019 Aug 19).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Zhang H, Xia HG, Zhang LM, Zhang B, Yue DS, Wang CL. Clinical significance of preoperative neutrophil-lymphocyte vs platelet-lymphocyte ratio in primary operable patients with non-small cell lung cancer. Am J Surg. 2015;210(3):526–35.

    Article 

    Google Scholar
     

  • 37.

    Wang X, Han H, Duan Q, Khan U, Hu Y, Yao X. Changes of serum albumin level and systemic inflammatory response in inoperable non-small cell lung cancer patients after chemotherapy. J Cancer Res Ther. 2014;10(4):1019–23. https://doi.org/10.4103/0973-1482.137953.

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Sandfeld-Paulsen B, Meldgaard P, Sorensen BS, Safwat A, Aggerholm-Pedersen N. The prognostic role of inflammation-scores on overall survival in lung cancer patients. Acta Oncol. 2019;58(3):371–6. https://doi.org/10.1080/0284186X.2018.1546057 (Epub 2019 Jan 11).

    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Peng B, Wang YH, Liu YM, Ma LX. Prognostic significance of the neutrophil to lymphocyte ratio in patients with non-small cell lung cancer a systemic review and meta-analysis. Int J Clin Exp Med. 2015;8(3):3098–106 (eCollection 2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Wang Z, Zhan P, Lv Y, Shen K, Wei Y, Liu H, et al. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio in non-small cell lung cancer patients treated with systemic therapy: a meta-analysis. Transl Lung Cancer Res. 2019;8(3):214–26. https://doi.org/10.21037/tlcr.2019.06.10.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Yu Y, Qian L, Cui J. Value of neutrophil-to-lymphocyte ratio for predicting lung cancer prognosis: A meta-analysis of 7,219 patients. Mol Clin Oncol. 2017;7(3):498–506. https://doi.org/10.3892/mco.2017.1342 (Epub 2017 Jul 24).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Akaike T. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–23.

    Article 

    Google Scholar
     

  • 43.

    Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247(18):2543–6.

    Article 

    Google Scholar
     

  • 44.

    Hox JJ, Roberts JK. Handbook of advanced multilevel analysis. New York: Routledge; 2011.

  • 45.

    Birbrair A. Tumor microenvironment. Recent Advances. The role of interleukins – Part A. Switzerland: Springer Nature; 2020.

  • 46.

    Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10105):1833–42. https://doi.org/10.1016/S0140-6736(17)32247-X (Epub 2017 Aug 27).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Harrison P, Pointon JJ, Chapman K, Roddam A, Wordsworth BP. Interleukin-1 promoter region polymorphism role in rheumatoid arthritis: a meta-analysis of IL-1B-511A/G variant reveals association with rheumatoid arthritis. Rheumatology (Oxford). 2008;47(12):1768–70.

    CAS 
    Article 

    Google Scholar
     

  • 48.

    McQuarrie ADR, Tsai C-L. Regression and Time Series Model Selection. London: World Scientific;1998.

  • 49.

    SandfeldPaulsen B, Meldgaard P, AggerholmPedersen N. Comorbidity in Lung Cancer A Prospective Cohort Study of Self-Reported versus Register-Based Comorbidity. JThorac Oncol. 2018;13(1):54–62.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)