• 1.

    Wang Z, Gerstein M, Snyder M. Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2008;10:57–63. https://doi.org/10.1038/nrg2484.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015(11):951–69. https://doi.org/10.1101/pdb.top084970.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3):666–73. https://doi.org/10.1016/j.celrep.2012.08.003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–6434. https://doi.org/10.1016/j.molcel.2017.01.023.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Washietl S, Will S, Hendrix DA, Goff LA, Rinn JL, Berger B, Kellis M. Computational analysis of noncoding RNAs. Wiley Interdiscip Rev: RNA. 2012;3(6):759–78. https://doi.org/10.1002/wrna.1134.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018. https://doi.org/10.1038/s12276-018-0071-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Dard-Dascot C, Naquin D, D’Aubenton-Carafa Y, Alix K, Thermes C, van Dijk E. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics. 2018;19(1):1–16. https://doi.org/10.1186/s12864-018-4491-6.

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Yeri A, Courtright A, Danielson K, Hutchins E, Alsop E, Carlson E, Hsieh M, Ziegler O, Das A, Shah RV, Rozowsky J, Das S, Van Keuren-Jensen K. Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genomics. 2018;19(1):1–15. https://doi.org/10.1186/s12864-018-4726-6.

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Roden C, Mastriano S, Wang N, Lu J. In: Santulli G (ed) microRNA expression profiling: technologies, insights, and prospects

  • 10.

    Faridani OR, Abdullayev I, Hagemann-Jensen M, Schell JP, Lanner F, Sandberg R. Single-cell sequencing of the small-RNA transcriptome. Nat Biotechnol. 2016;34(12):1264–6. https://doi.org/10.1038/nbt.3701.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-02866-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Verboom K, Everaert C, Bolduc N, Livak KJ, Yigit N, Rombaut D, Anckaert J, Lee S, Venø MT, Kjems J, Speleman F, Mestdagh P, Vandesompele J. SMARTer single cell total RNA sequencing. Nucleic Acids Res. 2019;47(16):93. https://doi.org/10.1093/nar/gkz535.

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, Larsson AJM, Faridani OR, Sandberg R. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol. 2020;38(6):708–14. https://doi.org/10.1038/s41587-020-0497-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Isakova A, Neff N, Quake SR. Single-cell quantification of a broad rna spectrum reveals unique noncoding patterns associated with cell types and states. Proc Natl Acad Sci. 2021. https://doi.org/10.1073/pnas.2113568118.

    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Ridwan Amode M, Armean IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Charkhchi M, Cummins C, da Rin Fioretto L, Davidson C, Dodiya K, El Houdaigui B, Fatima R, Gall A, Giron CG, Grego T, Guijarro-Clarke C, Haggerty L, Hemrom A, Hourlier T, Izuogu OG, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Martinez JG, Marugán JC, Maurel T, McMahon AC, Mohanan S, Moore B, Muffato M, Oheh DN, Paraschas D, Parker A, Parton A, Prosovetskaia I, Sakthivel MP, Abdul Salam AI, Schmitt BM, Schuilenburg H, Sheppard D, Steed E, Szpak M, Szuba M, Taylor K, Thormann A, Threadgold G, Walts B, Winterbottom A, Chakiachvili M, Chaubal A, de Silva N, Flint B, Frankish A, Hunt SE, IIsley GR, Langridge N, Loveland JE, Martin FJ, Mudge JM, Morales J, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Cunningham F, Yates AD, Zerbino DR, Flicek P. Ensembl 2021. Nucleic Acids Research. 2021;49(D1), 884–891. https://doi.org/10.1093/nar/gkaa942

  • 16.

    Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, Sisu C, Wright JC, Armstrong J, Barnes I, Berry A, Bignell A, Boix C, Sala SC, Cunningham F, Domenico TD, Donaldson S, Fiddes IT, Girón CG, Gonzalez JM, Grego T, Hardy M, Hourlier T, Howe KL, Hunt T, Izuogu OG, Johnson R, Martin FJ, Martínez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Riera FC, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Wolf MY, Xu J, Yang YT, Yates A, Zerbino D, Zhang Y, Choudhary JS, Gerstein M, Guigó R, Hubbard TJP, Kellis M, Paten B, Tress ML, Flicek P. Gencode 2021. Nucleic Acids Res. 2021;49(D1):916–23. https://doi.org/10.1093/nar/gkaa1087.

    CAS 
    Article 

    Google Scholar
     

  • 17.

    …O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):733–45. https://doi.org/10.1093/nar/gkv1189.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):155–62. https://doi.org/10.1093/nar/gky1141.

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Deschamps-Francoeur G, Simoneau J, Scott MS. Handling multi-mapped reads in RNA-seq. Comput Struct Biotechnol J. 2020;18:1569–76. https://doi.org/10.1016/j.csbj.2020.06.014.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. https://doi.org/10.1093/bioinformatics/btt656arXiv:1305.3347.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Deschamps-Francoeur G, Boivin V, Abou Elela S, Scott MS. CoCo: RNA-seq read assignment correction for nested genes and multimapped reads. Bioinformatics. 2019;35(23):5039–47. https://doi.org/10.1093/bioinformatics/btz433.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Kaminow B, Yunusov D, Dobin A. Starsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus rna-seq data. bioRxiv. 2021. https://doi.org/10.1101/2021.05.05.442755

  • 24.

    Li B, Dewey CN. RSEM Li and Dewey, 2011. BMC Bioinform. 2011;12(1):323.

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7. https://doi.org/10.1038/nbt.3519.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Johnson NR, Yeoh JM, Coruh C, Axtell MJ. Improved placement of multi-mapping small. RNAs G3: Genes Genomes Genet. 2016;6(7):2103–11. https://doi.org/10.1534/g3.116.030452.

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Handzlik JE, Tastsoglou S, Vlachos IS, Hatzigeorgiou AG. Manatee: detection and quantification of small non-coding RNAs from next-generation sequencing data. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-57495-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Zytnicki M. mmquant: How to count multi-mapping reads? BMC Bioinform. 2017;18(1):1–6. https://doi.org/10.1186/s12859-017-1816-4.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    McDermaid A, Chen X, Zhang Y, Wang C, Gu S, Xie J, Ma Q. A new machine learning-based framework for mapping uncertainty analysis in RNA-Seq read alignment and gene expression estimation. Front Genet. 2018;9(AUG):1–11. https://doi.org/10.3389/fgene.2018.00313.

    CAS 
    Article 

    Google Scholar
     

  • 31.

    An J, Lai J, Lehman ML, Nelson CC. MiRDeep*: An integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res. 2013;41(2):727–37. https://doi.org/10.1093/nar/gks1187.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Stocks MB, Mohorianu I, Beckers M, Paicu C, Moxon S, Thody J, Dalmay T, Moulton V. The UEA sRNA Workbench (version 4.4): A comprehensive suite of tools for analyzing miRNAs and sRNAs. Bioinformatics. 2018;34(19):3382–4. https://doi.org/10.1093/bioinformatics/bty338.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Kuksa PP, Amlie-Wolf A, Katanić Ž, Valladares O, Wang LS, Leung YY. SPAR: Small RNA-seq portal for analysis of sequencing experiments. Nucleic Acids Res. 2018;46(W1):36–42. https://doi.org/10.1093/nar/gky330.

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Liu Q, Ding C, Lang X, Guo G, Chen J, Su X. Small noncoding RNA discovery and profiling with sRNAtools based on high-throughput sequencing. Brief Bioinform. 2019;00(July):1–11. https://doi.org/10.1093/bib/bbz151.

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Fehlmann T, Kern F, Laham O, Backes C, Solomon J, Hirsch P, Volz C, Müller R, Keller A. miRMaster 2.0: multi-species non-coding RNA sequencing analyses at scale. Nucleic Acids Research, 2021. https://doi.org/10.1093/nar/gkab268

  • 36.

    Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA. 2008;105(4):1118–23. https://doi.org/10.1073/pnas.0706851105arXiv:0707.0609.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Rosvall M, Axelsson D, Bergstrom CT. The map equation. Eur Phys J: Spec Top. 2009;178(1):13–23. https://doi.org/10.1140/epjst/e2010-01179-1arXiv:0906.1405.

    Article 

    Google Scholar
     

  • 38.

    Leung YY, Kuksa PP, Amlie-Wolf A, Valladares O, Ungar LH, Kannan S, Gregory BD, Wang LS. DASHR: Database of Small human noncoding RNAs. Nucleic Acids Res. 2016;44(D1):216–22. https://doi.org/10.1093/nar/gkv1188.

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Sweeney BA, Petrov AI, Burkov B, Finn RD, Bateman A, Szymanski M, Karlowski WM, Gorodkin J, Seemann SE, Cannone JJ, Gutell RR, Fey P, Basu S, Kay S, Cochrane G, Billis K, Emmert D, Marygold SJ, Huntley RP, Lovering RC, Frankish A, Chan PP, Lowe TM, Bruford E, Seal R, Vandesompele J, Volders PJ, Paraskevopoulou M, Ma L, Zhang Z, Griffiths-Jones S, Bujnicki JM, Boccaletto P, Blake JA, Bult CJ, Chen R, Zhao Y, Wood V, Rutherford K, Rivas E, Cole J, Laulederkind SJF, Shimoyama M, Gillespie ME, Orlic-Milacic M, Kalvari I, Nawrocki E, Engel SR, Cherry JM, Team S, Berardini TZ, Hatzigeorgiou A, Karagkouni D, Howe K, Davis P, Dinger M, He S, Yoshihama M, Kenmochi N, Stadler PF, Williams KP. RNAcentral: A hub of information for non-coding RNA sequences. Nucleic Acids Research. 2019;47(D1):221–9. https://doi.org/10.1093/nar/gky1034.

  • 40.

    Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS. Small RNAs derived from snoRNAs. RNA. 2009;15(7):1233–40. https://doi.org/10.1261/rna.1528909.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Scott MS, Ono M. From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie. 2011;93(11):1987–92. https://doi.org/10.1016/j.biochi.2011.05.026.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: SnoRNA fragments form a new class of functional RNAs. BioEssays. 2013;35(1):46–54. https://doi.org/10.1002/bies.201200117.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    He X, Chen X, Zhang X, Duan X, Pan T, Hu Q, Zhang Y, Zhong F, Liu J, Zhang H, Luo J, Wu K, Peng G, Luo H, Zhang L, Li X, Zhang H. An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Res. 2015;43(7):3712–25. https://doi.org/10.1093/nar/gkv214.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Weber MJ. Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet. 2006;2(12):1984–97. https://doi.org/10.1371/journal.pgen.0020205.

    Article 

    Google Scholar
     

  • 45.

    Boivin V, Faucher-Giguère L, Scott M, Abou-Elela S. The cellular landscape of mid-size noncoding RNA. Wiley Interdiscip Rev: RNA. 2019;10(4):1–17. https://doi.org/10.1002/wrna.1530.

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Doucet AJ, Droc G, Siol O, Audoux J, Gilbert N. U6 snRNA pseudogenes: Markers of retrotransposition dynamics in mammals. Mol Biol Evol. 2015;32(7):1815–32. https://doi.org/10.1093/molbev/msv062.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Hüttenhofer A. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA. 2000;97(26):14311–6. https://doi.org/10.1073/pnas.250426397.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Bratkovič T, Bozič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48(4):1627–51. https://doi.org/10.1093/nar/gkz1140.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Wright MW, Bruford EA. Naming ‘junk’: Human non-protein coding RNA (ncRNA) gene nomenclature. Hum Genomics. 2011;5(2):90–8. https://doi.org/10.1186/1479-7364-5-2-90.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Seal RL, Chen L, Griffiths-Jones S, Lowe TM, Mathews MB, O’Reilly D, Pierce AJ, Stadler PF, Ulitsky I, Wolin SL, Bruford EA. A guide to naming human non-coding RNA genes. EMBO J. 2020;39(6):1–18. https://doi.org/10.15252/embj.2019103777.

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-Transcribed snRNA genes. Open Biol. 2017;7(6):3–11. https://doi.org/10.1098/rsob.170073.

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Perreault J, Noël JF, Brière F, Cousineau B, Lucier JF, Perreault JP, Boire G. Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res. 2005;33(6):2032–41. https://doi.org/10.1093/nar/gki504.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12(4):246–58. https://doi.org/10.1038/nrm3089.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Boivin V, Reulet G, Boisvert O, Couture S, Elela SA, Scott MS. Reducing the structure bias of RNA-Seq reveals a large number of non-annotated non-coding RNA. Nucleic Acids Research 8000(Ext 72123), 2020;1–16. https://doi.org/10.1093/nar/gkaa028

  • 55.

    Kalvari I, Nawrocki EP, Argasinska J, Quinones-Olvera N, Finn RD, Bateman A, Petrov AI. Non-Coding RNA Analysis Using the Rfam Database. Curr Protoc Bioinform. 2018;62(1):1–44. https://doi.org/10.1002/cpbi.51.

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Eddy SR, Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Res. 1994;22(11):2079–88. https://doi.org/10.1093/nar/22.11.2079.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5. https://doi.org/10.1093/bioinformatics/btt509.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Zhang Y, Huang H, Zhang D, Qiu J, Yang J, Wang K, Zhu L, Fan J, Yang J. A review on recent computational methods for predicting noncoding RNAs. BioMed Res Int. 2017. https://doi.org/10.1155/2017/9139504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    MacRae E. In: Hilario, E., Mackay, J. (eds.) Extraction of Plant RNA, pp. 15–24. Humana Press, Totowa, NJ. 2007. https://doi.org/10.1385/1-59745-229-7:15.

  • 60.

    Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–358729. https://doi.org/10.1016/j.cell.2021.04.048.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)