• 1.

    Payne J, McKeown P, Jones MD. A circular economy approach to plastic waste. Polym Degrad Stab. 2019;165:170–81. https://doi.org/10.1016/j.polymdegradstab.2019.05.014.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Gigault J, ter Halle A, Baudrimont M, Pascal PY, Gauffre F, Phi TL, et al. Current opinion: what is a nanoplastic? Environ Pollut. 2018;235:1030–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol. 2019;53(4):1748–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Li P, Wang X, Su M, Zou X, Duan L, Zhang H. Characteristics of plastic pollution in the environment: a review. Bull Environ Contam Toxicol. 2020;1–8.

  • 5.

    Mozaffari N, Kholdebarin A. A review: investigation of plastics effect on the environment, bioplastic global market share and its future perspectives. 2019;

  • 6.

    Mohee R, Unmar GD, Mudhoo A, Khadoo P. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manag. 2008;28(9):1624–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Qi R, Jones DL, Li Z, Liu Q, Yan C. Behavior of microplastics and plastic film residues in the soil environment: a critical review. Sci Total Environ. 2020;703:134722. https://doi.org/10.1016/j.scitotenv.2019.134722.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Wang L, Wu WM, Bolan NS, Tsang DCW, Li Y, Qin M, et al. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. J Hazard Mater. 2021;401(June 2020):123415. https://doi.org/10.1016/j.jhazmat.2020.123415.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chemie Int Ed. 2017;56(7):1720–39.

    CAS 

    Google Scholar
     

  • 10.

    Schwaferts C, Niessner R, Elsner M, Ivleva NP. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal Chem. 2019;112:52–65. https://doi.org/10.1016/j.trac.2018.12.014.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Bouwmeester H, Hollman PCH, Peters RJB. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol. 2015;49(15):8932–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Issac MN, Kandasubramanian B. Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res. 2021;1–19.

  • 13.

    Hchaichi I, Bandini F, Spini G, Banni M, Cocconcelli PS, Puglisi E. Enterococcus faecalis and Vibrio harveyi colonize low-density polyethylene and biodegradable plastics under marine conditions. FEMS Microbiol Lett. 2020;367(15):fnaa125.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Bandini F, Hchaichi I, Zitouni N, Missawi O, Cocconcelli PS, Puglisi E, et al. Bacterial community profiling of floating plastics from South Mediterranean sites: first evidence of effects on mussels as possible vehicles of transmission. J Hazard Mater. 2021;411:125079.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin? ACS Publications; 2016.


    Google Scholar
     

  • 16.

    Duis K, Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur. 2016;28(1):1–25.

    CAS 

    Google Scholar
     

  • 17.

    Wang J, Liu X, Li Y, Powell T, Wang X, Wang G, et al. Microplastics as contaminants in the soil environment: a mini-review. Sci Total Environ. 2019;691:848–57. https://doi.org/10.1016/j.scitotenv.2019.07.209.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    (CONTAM) EP on C in the FC. Presence of microplastics and nanoplastics in food, with particular focus on seafood. Efsa J. 2016;14(6):e04501.

  • 19.

    Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J Clean Prod. 2020;254:120138. https://doi.org/10.1016/j.jclepro.2020.120138.

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu HW, Geissen V, et al. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ. 2018;627:1377–88. https://doi.org/10.1016/j.scitotenv.2018.01.341.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, et al. Degradation rates of plastics in the environment. ACS Sustain Chem Eng. 2020;8(9):3494–511.

    CAS 

    Google Scholar
     

  • 22.

    Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18(3):139–51. https://doi.org/10.1038/s41579-019-0308-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Gewert B, Plassmann MM, MacLeod M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts. 2015;17(9):1513–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JKH, Wu C, et al. Understanding plastic degradation and microplastic formation in the environment: a review. Environ Pollut. 2021;274:116554.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Albertsson A. Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. J Appl Polym Sci. 1978;22(12):3419–33.

    CAS 

    Google Scholar
     

  • 26.

    Maraveas C. Environmental sustainability of plastic in agriculture. Agric. 2020;10(8):1–15.


    Google Scholar
     

  • 27.

    Craig IH, White JR, Shyichuk AV, Syrotynska I. Photo-induced scission and crosslinking in LDPE, LLDPE, and HDPE. Polym Eng Sci. 2005;45(4):579–87.

    CAS 

    Google Scholar
     

  • 28.

    Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-02881-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Lajeunesse S. Plastic bags. Chem Eng News. 2004;82(38):51.


    Google Scholar
     

  • 30.

    Muthukumar T, Aravinthan A, Lakshmi K, Venkatesan R, Vedaprakash L, Doble M. Fouling and stability of polymers and composites in marine environment. Int Biodeterior Biodegradation. 2011;65(2):276–84.

    CAS 

    Google Scholar
     

  • 31.

    Gross RA, Kalra B. Biodegradable polymers for the environment. Science (80-). 2002;297(5582):803–7.

    CAS 

    Google Scholar
     

  • 32.

    Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: frontline microbes and their enzymes. Sci Total Environ. 2020;759:143536.

    PubMed 

    Google Scholar
     

  • 33.

    Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-independent secretion of polyethylene terephthalate hydrolase petase in Bacillus subtilis 168 mediated by its native signal peptide. J Agric Food Chem. 2018;66(50):13217–27.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Danso Z. Supplemental figures new insights into the function and global distribution of polyethylene terephthalate ( PET ) -degrading bacteria and terrestrial metagenome. Appl Environ Microbiol. 2018;53(8):1689–99.


    Google Scholar
     

  • 35.

    Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, et al. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J. 2016;11(8):1082–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science (80-). 2016;351(6278):1196–9.

    CAS 

    Google Scholar
     

  • 37.

    Yan F, Wei R, Cui Q, Bornscheuer UT, Liu Y. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb Biotechnol. 2020. https://doi.org/10.1111/1751-7915.13580.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Park SY, Kim CG. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere. 2019;222:527–33. https://doi.org/10.1016/j.chemosphere.2019.01.159.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Kumar Sen S, Raut S. Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng. 2015;3(1):462–73. https://doi.org/10.1016/j.jece.2015.01.003.

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Wang Z, Xin X, Shi X, Zhang Y. A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Sci Total Environ. 2020;726:138564. https://doi.org/10.1016/j.scitotenv.2020.138564.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Urbanek AK, Mirończuk AM, García-Martín A, Saborido A, de la Mata I, Arroyo M. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochim Biophys Acta Proteins Proteomics. 2020;1868(2):140315. https://doi.org/10.1016/j.bbapap.2019.140315.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Espinosa MJC, Blanco AC, Schmidgall T, Atanasoff-Kardjalieff AK, Kappelmeyer U, Tischler D, et al. Toward biorecycling: isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front Microbiol. 2020;11(March):1–9.


    Google Scholar
     

  • 43.

    Guo X, Wang J. The chemical behaviors of microplastics in marine environment: a review. Mar Pollut Bull. 2019;142:1–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E. Polymer biodegradation: mechanisms and estimation techniques–a review. Chemosphere. 2008;73(4):429–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Iovino R, Zullo R, Rao MA, Cassar L, Gianfreda L. Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab. 2008;93(1):147–57.

    CAS 

    Google Scholar
     

  • 46.

    Cai L, Wang J, Peng J, Wu Z, Tan X. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Sci Total Environ. 2018;628:740–7.

    PubMed 

    Google Scholar
     

  • 47.

    Maity S, Banerjee S, Biswas C, Guchhait R, Chatterjee A, Pramanick K. Functional interplay between plastic polymers and microbes: a comprehensive review. Biodegradation. 2021. https://doi.org/10.1007/s10532-021-09954-x.

    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G. Environmental biodegradation of polyethylene. Polym Degrad Stab. 2003;81(3):441–52.

    CAS 

    Google Scholar
     

  • 49.

    Gu JD. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad. 2003;52(2):69–91.

    CAS 

    Google Scholar
     

  • 50.

    Van Elsas JD, Trevors JT, Rosado AS, Nannipieri P. Modern soil microbiology. CRC Press; 2019.


    Google Scholar
     

  • 51.

    Rillig MC. Microplastic in terrestrial ecosystems and the soil? ACS Publications; 2012.


    Google Scholar
     

  • 52.

    Sanchez-Hernandez JC, Capowiez Y, Ro KS. Potential use of earthworms to enhance decaying of biodegradable plastics. ACS Sustain Chem Eng. 2020;8(11):4292–316.

    CAS 

    Google Scholar
     

  • 53.

    Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017;59:526–36. https://doi.org/10.1016/j.wasman.2016.10.006.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Moharir RV, Kumar S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review. J Clean Prod. 2019;208:65–76. https://doi.org/10.1016/j.jclepro.2018.10.059.

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Briassoulis D, Pikasi A, Hiskakis M. End-of-waste life: Inventory of alternative end-of-use recirculation routes of bio-based plastics in the European Union context. Crit Rev Environ Sci Technol. 2019;49(20):1835–92. https://doi.org/10.1080/10643389.2019.1591867.

    Article 

    Google Scholar
     

  • 56.

    Strategy P. A European strategy for plastics in a circular economy. Commun from Comm to Eur Parliam Counc Eur Econ Soc Comm Comm Reg Brussels. 2018;12.

  • 57.

    Pramila R, Ramesh KV. Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water a SEM analysis. Afr J Microbiol Res. 2011;5(28):5013–8.

    CAS 

    Google Scholar
     

  • 58.

    Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci. 2009;364(1526):2027–45.

    CAS 

    Google Scholar
     

  • 59.

    Idumah CI, Nwuzor IC. Novel trends in plastic waste management. SN Appl Sci. 2019;1(11):1–14.

    CAS 

    Google Scholar
     

  • 60.

    van Emmerik T, Kieu-Le T-C, Loozen M, van Oeveren K, Strady E, Bui X-T, et al. A methodology to characterize riverine macroplastic emission into the ocean. Front Mar Sci. 2018;5:372.


    Google Scholar
     

  • 61.

    Merrild H, Larsen AW, Christensen TH. Assessing recycling versus incineration of key materials in municipal waste: the importance of efficient energy recovery and transport distances. Waste Manag. 2012;32(5):1009–18.

    PubMed 

    Google Scholar
     

  • 62.

    Singh RK, Ruj B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel. 2016;174:164–71.

    CAS 

    Google Scholar
     

  • 63.

    Solis M, Silveira S. Technologies for chemical recycling of household plastics–a technical review and TRL assessment. Waste Manag. 2020;105:128–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Hamad K, Kaseem M, Deri F. Recycling of waste from polymer materials: an overview of the recent works. Polym Degrad Stab. 2013;98(12):2801–12.

    CAS 

    Google Scholar
     

  • 66.

    Vigneswaran S, Kandasamy J, Johir MAH. Sustainable operation of composting in solid waste management. Procedia Environ Sci. 2016;35:408–15.


    Google Scholar
     

  • 67.

    Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv. 2018;4(4):1–8.


    Google Scholar
     

  • 68.

    Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, Van Franeker JA, et al. A global inventory of small floating plastic debris. Environ Res Lett. 2015;10(12):124006.


    Google Scholar
     

  • 70.

    de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol. 2018;24(4):1405–16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    de Souza Machado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, et al. Impacts of microplastics on the soil biophysical environment. Environ Sci Technol. 2018;52(17):9656–65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E. Large microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, sources and methods for effective quantification. Mar Pollut Bull. 2017;114(1):218–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, Van Der Ploeg M, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol. 2016;50(5):2685–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Process Impacts. 2016;18(8):1050–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Nizzetto L, Langaas S, Futter M. Pollution: do microplastics spill on to farm soils? Nature. 2016;537(7621):488.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62(8):1596–605.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull. 2011;62(12):2588–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Kershaw PJ, Rochman CM. Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment. Rep Stud Jt Gr Expert Sci Asp Mar Environ Prot Eng No 93. 2015;

  • 79.

    Bläsing M, Amelung W. Plastics in soil: analytical methods and possible sources. Sci Total Environ. 2018;612:422–35. https://doi.org/10.1016/j.scitotenv.2017.08.086.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Hurley RR, Nizzetto L. Fate and occurrence of micro (nano) plastics in soils: knowledge gaps and possible risks. Curr Opin Environ Sci Heal. 2018;1:6–11.


    Google Scholar
     

  • 81.

    Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ. 2019;671:411–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environ Sci Technol. 2020;54(7):4248–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ Pollut. 2020;261:114198.

    PubMed 

    Google Scholar
     

  • 84.

    Zhou J, Wen Y, Marshall MR, Zhao J, Gui H, Yang Y, et al. Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci Total Environ 2021;787:147444. https://www.sciencedirect.com/science/article/pii/S0048969721025158

  • 85.

    Wang J, Li J, Liu S, Li H, Chen X, Peng C, et al. Distinct microplastic distributions in soils of different land-use types: a case study of Chinese farmlands. Environ Pollut. 2021;269:116199.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Jiang XJ, Liu W, Wang E, Zhou T, Xin P. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res. 2017;166:100–7.


    Google Scholar
     

  • 87.

    Zhang M, Dong B, Qiao Y, Yang H, Wang Y, Liu M. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. F Crop Res. 2018;225:130–40.


    Google Scholar
     

  • 88.

    Zhao Z-Y, Wang P-Y, Wang Y-B, Zhou R, Koskei K, Munyasya AN, et al. Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks. J Hazard Mater. 2021;416:125954.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Liu Y, Huang Q, Hu W, Qin J, Zheng Y, Wang J, et al. Effects of plastic mulch film residues on soil-microbe-plant systems under different soil pH conditions. Chemosphere. 2021;267:128901.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Zhou J, Gui H, Banfield CC, Wen Y, Zang H, Dippold MA, et al. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem. 2021;156:108211.

    CAS 

    Google Scholar
     

  • 91.

    Liang Y, Lehmann A, Yang G, Leifheit EF, Rillig MC. Effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. Front Environ Sci. 2021;9:97.


    Google Scholar
     

  • 92.

    Blöcker L, Watson C, Wichern F. Living in the plastic age-Different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy. Environ Pollut. 2020;267:115468.

    PubMed 

    Google Scholar
     

  • 93.

    Zubris KAV, Richards BK. Synthetic fibers as an indicator of land application of sludge. Environ Pollut. 2005;138(2):201–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol. 2018;52(4):1704–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017;108:365–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Willén A, Junestedt C, Rodhe L, Pell M, Jönsson H. Sewage sludge as fertiliser–environmental assessment of storage and land application options. Water Sci Technol. 2017;75(5):1034–50.

    PubMed 

    Google Scholar
     

  • 97.

    Clarke RM, Cummins E. Evaluation of “classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Hum Ecol Risk Assess An Int J. 2015;21(2):492–513.

    CAS 

    Google Scholar
     

  • 98.

    Chu Z, Fan X, Wang W, Huang W. Quantitative evaluation of heavy metals’ pollution hazards and estimation of heavy metals’ environmental costs in leachate during food waste composting. Waste Manag. 2019;84:119–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Scopetani C, Chelazzi D, Mikola J, Leiniö V, Heikkinen R, Cincinelli A, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci Total Environ. 2020;733:139338.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Jabeen K, Su L, Li J, Yang D, Tong C, Mu J, et al. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ Pollut. 2017;221:141–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Liu M, Lu S, Song Y, Lei L, Hu J, Lv W, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ Pollut. 2018;242:855–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Battista F, Frison N, Bolzonella D. Can bioplastics be treated in conventional anaerobic digesters for food waste treatment? Environ Technol Innov. 2021;22:101393.

    CAS 

    Google Scholar
     

  • 103.

    Bandini F, Frache A, Ferrarini A, Taskin E, Cocconcelli PS, Puglisi E. Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste. J Polym Environ. 2020. https://doi.org/10.1007/s10924-020-01791-y.

    Article 

    Google Scholar
     

  • 104.

    Ruggero F, Gori R, Lubello C. Methodologies for microplastics recovery and identification in heterogeneous solid matrices: a review. J Polym Environ. 2020;28(3):739–48.

    CAS 

    Google Scholar
     

  • 105.

    Tyagi VK, Fdez-Güelfo LA, Zhou Y, Álvarez-Gallego CJ, Garcia LIR, Ng WJ. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): progress and challenges. Renew Sustain Energy Rev. 2018;93(April):380–99.


    Google Scholar
     

  • 106.

    Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian R. Food waste-to-energy conversion technologies: current status and future directions. Waste Manag. 2015;38:399–408.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Kumar A, Samadder SR. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 2017;69:407–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Khan D, Kumar A, Samadder SR. Impact of socioeconomic status on municipal solid waste generation rate. Waste Manag. 2016;49:15–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Mahlia TMI, Syazmi Z, Mofijur M, Abas AEP, Bilad MR, Ong HC, et al. Patent landscape review on biodiesel production: technology updates. Renew Sustain Energy Rev. 2020;118:109526.

    CAS 

    Google Scholar
     

  • 110.

    Ong HC, Milano J, Silitonga AS, Hassan MH, Wang C-T, Mahlia TMI, et al. Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. J Clean Prod. 2019;219:183–98.

    CAS 

    Google Scholar
     

  • 111.

    Palmisano AC, Barlaz MA. Microbiology of solid waste, vol. 3. CRC Press; 1996.


    Google Scholar
     

  • 112.

    Hansen TL, la Cour JJ, Spliid H, Davidsson Å, Christensen TH. Composition of source-sorted municipal organic waste collected in Danish cities. Waste Manag. 2007;27(4):510–8.

    PubMed 

    Google Scholar
     

  • 113.

    Aleluia J, Ferrão P. Characterization of urban waste management practices in developing Asian countries: a new analytical framework based on waste characteristics and urban dimension. Waste Manag. 2016;58:415–29.

    PubMed 

    Google Scholar
     

  • 114.

    Cesaro A, Conte A, Belgiorno V, Siciliano A, Guida M. The evolution of compost stability and maturity during the full-scale treatment of the organic fraction of municipal solid waste. J Environ Manage. 2019;232:264–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Tchobanoglous G, Kreith F. Handbook of solid waste management. McGraw-Hill Education; 2002.


    Google Scholar
     

  • 116.

    McDougall FR, White PR, Franke M, Hindle P. Integrated solid waste management: a life cycle inventory. Wiley; 2008.


    Google Scholar
     

  • 117.

    Al Seadi T, Owen NE, Hellström H, Kang H. Source separation of MSW. IEA Bioenergy Paris; 2013.


    Google Scholar
     

  • 118.

    Mata-Alvarez J, Macé S, Llabres P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol. 2000;74(1):3–16.

    CAS 

    Google Scholar
     

  • 119.

    Vergara SE, Tchobanoglous G. Municipal solid waste and the environment: a global perspective. Annu Rev Environ Resour. 2012;37:277–309.


    Google Scholar
     

  • 120.

    Hoornweg D, Bhada-Tata P. What a waste: a global review of solid waste management. 2012;

  • 121.

    Psomopoulos CS, Bourka A, Themelis NJ. Waste-to-energy: a review of the status and benefits in USA. Waste Manag. 2009;29(5):1718–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Department for Environment F and RA. Incineration of municipal solid waste. 2013;

  • 123.

    Campuzano R, González-Martínez S. Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag. 2016;54:3–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Zamri M, Hasmady S, Akhiar A, Ideris F, Shamsuddin AH, Mofijur M, et al. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew Sustain Energy Rev. 2021;137:110637.

    CAS 

    Google Scholar
     

  • 125.

    Luning L, Van Zundert EHM, Brinkmann AJF. Comparison of dry and wet digestion for solid waste. Water Sci Technol. 2003;48(4):15–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Van Fan Y, Klemeš JJ, Lee CT, Perry S. Anaerobic digestion of municipal solid waste: energy and carbon emission footprint. J Environ Manage. 2018;223:888–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Mahmudul HM, Rasul MG, Akbar D, Narayanan R, Mofijur M. A comprehensive review of the recent development and challenges of a solar-assisted biodigester system. Sci Total Environ. 2020;753:141920.

    PubMed 

    Google Scholar
     

  • 128.

    Nielfa A, Cano R, Fdz-Polanco M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep. 2015;5:14–21.

    CAS 

    Google Scholar
     

  • 129.

    Chatterjee B, Mazumder D. Anaerobic digestion for the stabilization of the organic fraction of municipal solid waste: a review. Environ Rev. 2016;24(4):426–59.

    CAS 

    Google Scholar
     

  • 130.

    Monson KD, Esteves SR, Guwy AJ, Dinsdale RM. Anaerobic digestion of biodegradable municipal wastes: a review. Univ Glamorgan ISBN. 2007;2007:971–8.

  • 131.

    Angelidaki I, Chen X, Cui J, Kaparaju P, Ellegaard L. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor. Water Res. 2006;40(14):2621–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Straka F, Jenicek P, Zabranska J, Dohanyos M, Kuncarova M. Anaerobic fermentation of biomass and wastes with respect to sulfur and nitrogen contents in treated materials. 2007;

  • 133.

    Fountoulakis MS, Drakopoulou S, Terzakis S, Georgaki E, Manios T. Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass Bioenerg. 2008;32(2):155–61.

    CAS 

    Google Scholar
     

  • 134.

    Gomez X, Cuetos MJ, Cara J, Moran A, Garcia AI. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: Conditions for mixing and evaluation of the organic loading rate. Renew Energy. 2006;31(12):2017–24.

    CAS 

    Google Scholar
     

  • 135.

    Cristancho DE, Arellano AV. Study of the operational conditions for anaerobic digestion of urban solid wastes. Waste Manag. 2006;26(5):546–56.

    PubMed 

    Google Scholar
     

  • 136.

    Zhang W, Heaven S, Banks CJ. Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste. Polym Degrad Stab. 2018;147:76–88.

    CAS 

    Google Scholar
     

  • 137.

    Al Seadi T, Lukehurst C. Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy. 2012;37:40.


    Google Scholar
     

  • 138.

    Zhang Y, Banks CJ. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Manag. 2013;33(2):297–307.

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Izumi K, Okishio Y, Nagao N, Niwa C, Yamamoto S, Toda T. Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegrad. 2010;64(7):601–8.

    CAS 

    Google Scholar
     

  • 140.

    Jara-Samaniego J, Pérez-Murcia MD, Bustamante MA, Pérez-Espinosa A, Paredes C, López M, et al. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J Clean Prod. 2017;141:1349–58.

    CAS 

    Google Scholar
     

  • 141.

    Meyer-Kohlstock D, Schmitz T, Kraft E. OrganicWaste for compost and biochar in the EU: mobilizing the potential. Resources. 2015;4(3):457–75.


    Google Scholar
     

  • 142.

    Smith SR. Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos Trans R Soc A Math Phys Eng Sci. 1904;2009(367):4005–41.


    Google Scholar
     

  • 143.

    Saveyn H, Eder P. End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Spain: IPTS Sevilla; 2014.


    Google Scholar
     

  • 144.

    Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, et al. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manag. 2015;40:44–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 145.

    Guo R, Li G, Jiang T, Schuchardt F, Chen T, Zhao Y, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour Technol. 2012;112:171–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Iqbal MK, Shafiq T, Ahmed K. Characterization of bulking agents and its effects on physical properties of compost. Bioresour Technol. 2010;101(6):1913–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Brito LM, Mourão I, Coutinho J, Smith SR. Simple technologies for on-farm composting of cattle slurry solid fraction. Waste Manag. 2012;32(7):1332–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 148.

    Larney FJ, Hao X. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta. Canada Bioresour Technol. 2007;98(17):3221–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Viaene J, Nelissen V, Reubens B, Willekens K, Driehuis F, De Neve S, et al. Improving the product stability and fertilizer value of cattle slurry solid fraction through co-composting or co-ensiling. Waste Manag. 2017;61:494–505.

    PubMed 

    Google Scholar
     

  • 150.

    Lü F, Shao L-M, Zhang H, Fu W-D, Feng S-J, Zhan L-T, et al. Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: a minireview. Bioresour Technol. 2018;248:122–33.

    PubMed 

    Google Scholar
     

  • 151.

    Yuan Y, Tao Y, Zhou S, Yuan T, Lu Q, He J. Electron transfer capacity as a rapid and simple maturity index for compost. Bioresour Technol. 2012;116:428–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 152.

    Calabrò PS, Grosso M. Bioplastics and waste management. Waste Manag. 2018;2019(78):800–1.


    Google Scholar
     

  • 153.

    Markowicz F, Szymańska-Pulikowska A. Analysis of the possibility of environmental pollution by composted biodegradable and oxobiodegradable plastics. Geosci. 2019;9(11):460.

    CAS 

    Google Scholar
     

  • 154.

    Rodrigues LC, Puig-Ventosa I, López M, Martínez FX, Ruiz AG, Bertrán TG. The impact of improper materials in biowaste on the quality of compost. J Clean Prod. 2020;251:119601.


    Google Scholar
     

  • 155.

    Lim JW, Ting DWQ, Loh KC, Ge T, Tong YW. Effects of disposable plastics and wooden chopsticks on the anaerobic digestion of food waste. Waste Manag. 2018;79:607–14. https://doi.org/10.1016/j.wasman.2018.08.033.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 156.

    Muthuswamy S, Nemerow NL. Effects of plastics in anaerobic digestion of urban solid wastes. Waste Manag Res. 1990;8(5):375–8.

    CAS 

    Google Scholar
     

  • 157.

    Kakadellis S, Woods J, Harris ZM. Friend or foe: stakeholder attitudes towards biodegradable plastic packaging in food waste anaerobic digestion. Resour Conserv Recycl. 2021;169:105529.


    Google Scholar
     

  • 158.

    Chen Y, Zhang Y, Zhang Z. Occurrence, effects, and biodegradation of plastic additives in sludge anaerobic digestion: a review. Environ Pollut. 2021;287:117568.

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Bandini F, Misci C, Taskin E, Cocconcelli PS, Puglisi E. Biopolymers modulate microbial communities in municipal organic waste digestion. FEMS Microbiol Ecol. 2020;96(10):fiaa183.

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Körner I, Redemann K, Stegmann R. Behaviour of biodegradable plastics in composting facilities. Waste Manag. 2005;25(4):409–15.

    PubMed 

    Google Scholar
     

  • 161.

    Cao D, Wang X, Luo X, Liu G, Zheng H. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. In: IOP conference series: earth and environmental science. IOP Publishing; 2017. p. 12148.

  • 162.

    Rillig MC. Microplastic disguising as soil carbon storage. ACS Publications; 2018.


    Google Scholar
     

  • 163.

    EN13432 CE de NCEN. Packaging–Requirements for packaging recoverable through composting and biodegradation–Test scheme and evaluation criteria for the final acceptance of packaging. Eur Comm Stand Brussels. 2000;

  • 164.

    Spaccini R, Todisco D, Drosos M, Nebbioso A, Piccolo A. Decomposition of bio-degradable plastic polymer in a real on-farm composting process. Chem Biol Technol Agric. 2016;3(1):1–12.


    Google Scholar
     

  • 165.

    Sintim HY, Bary AI, Hayes DG, English ME, Schaeffer SM, Miles CA, et al. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Sci Total Environ. 2019;675:686–93. https://doi.org/10.1016/j.scitotenv.2019.04.179.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 166.

    Kehres BH, Aktuell K. Änderung der Düngemittelordnung. BGK eV; 2015.

  • 167.

    Long M, Moriceau B, Gallinari M, Lambert C, Huvet A, Raffray J, et al. Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar Chem. 2015;175:39–46.

    CAS 

    Google Scholar
     

  • 168.

    Kowalski N, Reichardt AM, Waniek JJ. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar Pollut Bull. 2016;109(1):310–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 169.

    Rodríguez-Seijo A, Pereira R. Microplastics in Agricultural Soils. CRC Press; 2019.


    Google Scholar
     

  • 170.

    Hopewell J, Dvorak R, Kosior E. Plastics recycling: challenges and opportunities. Philos Trans R Soc B Biol Sci. 2009;364(1526):2115–26.

    CAS 

    Google Scholar
     

  • 171.

    Ruggero F, Porter AE, Voulvoulis N, Carretti E, Lotti T, Lubello C, et al. A highly efficient multi-step methodology for the quantification of micro-(bio) plastics in sludge. Waste Manag Res. 2020. https://doi.org/10.1177/0734242X20974094.

    Article 
    PubMed 

    Google Scholar
     

  • 172.

    Watteau F, Dignac MF, Bouchard A, Revallier A, Houot S. Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front Sustain Food Syst. 2018. https://doi.org/10.3389/fsufs.2018.00081.

    Article 

    Google Scholar
     

  • 173.

    Setälä O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut. 2014;185:77–83.

    PubMed 

    Google Scholar
     

  • 174.

    Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174:572–84.

    PubMed 

    Google Scholar
     

  • 175.

    Gui J, Sun Y, Wang J, Chen X, Zhang S, Wu D. Microplastics in compostinof rural domestic waste: abundance, characteristics, and release from the surface of macroplastics. Environ Pollut. 2021;274:116553.

    CAS 
    PubMed 

    Google Scholar
     

  • 176.

    van Schothorst B, Beriot N, Huerta Lwanga E, Geissen V. Sources of light density microplastic related to two agricultural practices: the use of compost and plastic mulch. Environments. 2021;8(4):36.


    Google Scholar
     

  • 177.

    Gajst T. Analysis of plastic residues in commercial compost. Nov Goric Univ Nov Goric. 2016;

  • 178.

    Braun M, Mail M, Heyse R, Amelung W. Plastic in compost: prevalence and potential input into agricultural and horticultural soils. Sci Total Environ. 2021;760:143335.

    CAS 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)