• 1.

    Okada P, Buathong R, Phuygun S et al (2020) Early transmission patterns of coronavirus disease 2019 (COVID-19) in travellers from Wuhan to Thailand, January 2020. Euro Surveill 25(8). https://doi.org/10.2807/1560-7917.ES.2020.25.8.2000097

  • 2.

    Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT (2021) SARS-CoV-2, the pandemic coronavirus: molecular and structural insights. J Basic Microbiol 61(3):180–202. https://doi.org/10.1002/jobm.202000537

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Tortorici MA, Veesler D (2019) Structural insights into coronavirus entry. Adv Virus Res 105:93–116. https://doi.org/10.1016/bs.aivir.2019.08.002

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Park JE, Li K, Barlan A et al (2016) Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci USA 113(43):12262–12267. https://doi.org/10.1073/pnas.1608147113

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Walls AC, Tortorici MA, Bosch BJ et al (2016) Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531(7592):114–117. https://doi.org/10.1038/nature16988

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Juraszek J, Rutten L, Blokland S et al (2021) Stabilizing the closed SARS-CoV-2 spike trimer. Nat Commun 12(1):244. https://doi.org/10.1038/s41467-020-20321-x

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Zhou T, Tsybovsky Y, Gorman J et al (2020) Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe 28(6):867–879. https://doi.org/10.1016/j.chom.2020.11.004

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Bangaru S, Ozorowski G, Turner HL et al (2020) Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science 370(6520):1089–1094. https://doi.org/10.1126/science.abe1502

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Barnes CO, Jette CA, Abernathy ME et al (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588(7839):682–687. https://doi.org/10.1038/s41586-020-2852-1

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Anand SP, Chen Y, Prévost J et al (2020) Interaction of human ACE2 to membrane-bound SARS-CoV-1 and SARS-CoV-2 S glycoproteins. Viruses 12(10):E1104. https://doi.org/10.3390/v12101104

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Shang J, Wan Y, Luo C et al (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 117(21):11727–11734. https://doi.org/10.1073/pnas.2003138117

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Li F, Li W, Farzan M, Harrison SC (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309(5742):1864–1868. https://doi.org/10.1126/science.1116480

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Ahmad W, Shabbiri K, Islam N (2020) O-β-GlcNAcylation, chloroquine and 2-hydroxybenzohydrazine may hamper SARS-CoV-2 entry to human via inhibition of ACE2 phosphorylation at Ser787 but also induce disruption of virus-ACE2 binding. Preprint https://doi.org/10.20944/preprints202004.0390.v1

  • 16.

    Li S, Li S, Disoma C et al (2020) SARS-CoV-2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol. https://doi.org/10.1002/rmv.2168

  • 17.

    (2014) Infection prevention and control of epidemic-and pandemic-prone acute respiratory infections in health care. World Health Organization, Geneva. Available at https://apps.who.int/iris/bitstream/handle/10665/112656/9789241507134_eng.pdf;jsessionid=41AA684FB64571CE8D8A453C4F2B2096?sequence=1. Accessed 20-22 Oct 2021.

  • 18.

    Bourouiba L (2020) Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA. 323(18):1837–1838. https://doi.org/10.1001/jama.2020.4756

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN et al (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382:1564–1567. https://doi.org/10.1056/NEJMc2004973

    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Fears AC, Klimstra WB, Duprex P, Weaver SC, Plante JA, Aguilar PV et al (2020) Persistence of severe acute respiratory syndrome coronavirus 2 in aerosol suspensions. Emerg Infect Dis 26(9). https://doi.org/10.3201/eid2609.201806

  • 21.

    Chia PY, for the Singapore Novel Coronavirus Outbreak Research T, Coleman KK, Tan YK, SWX O, Gum M et al (2020) Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-16670-2

  • 22.

    Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK et al (2020) Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 582:557–560. https://doi.org/10.1038/s41586-020-2271-3

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Wang W, Xu Y, Gao R, Lu R, Han K, Wu G et al (2020) Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 323(18):1843–1844. https://doi.org/10.1001/jama.2020.3786

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Chang L, Zhao L, Gong H, Wang L, Wang L (2020) Severe acute respiratory syndrome coronavirus 2 RNA detected in blood donations. Emerg Infect Dis 26:1631–1633. https://doi.org/10.3201/eid2607.200839

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Breastfeeding and COVID-19. World Health Organization, Geneva. 2020. Available at https://www.who.int/newsroom/commentaries/detail/breastfeeding-and-covid-19. Accessed 20-22 Oct 2021.

  • 26.

    Swelum AA, Shafi ME, Albaqami NM et al (2020) COVID-19 in Human, Animal, and Environment: A Review. Front Vet Sci 7:578. https://doi.org/10.3389/fvets.2020.00578

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Davies N, Klepac P, Liu Y, Prem K, Jit M, CCMID COVID-19 Working Group et al (2020) Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. https://doi.org/10.1038/s41591-020-0962-9

  • 28.

    Qian G, Yang N, Ma AHY, Wang L, Li G, Chen X et al (2020) COVID-19 Transmission Within a Family Cluster by Presymptomatic Carriers in China. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa316

  • 29.

    Kimball A, Hatfield KM, Arons M, James A, Taylor J, Spicer K et al (2020) Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility—King County, Washington, March 2020. MMWR Surveill Summ 69(13):377. https://doi.org/10.15585/mmwr.mm6913e1

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Wang Y, Liu Y, Liu L, Wang X, Luo N, Ling L (2020) Clinical outcome of 55 asymptomatic cases at the time of hospital admission infected with SARS-Coronavirus-2 in Shenzhen, China. J Infect Dis 221(11):1770–1774. https://doi.org/10.1093/infdis/jiaa119

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Sakurai A, Sasaki T, Kato S, Hayashi M, Tsuzuki S-I, Ishihara T et al (2020) Natural history of asymptomatic SARS-CoV-2 infection. N Engl J Med. https://doi.org/10.1056/NEJMc2013020

  • 32.

    Kevadiya BD, Machhi J, Herskovitz J et al (2021) Diagnostics for SARS-CoV-2 infections. Nat Mater 20(5):593–605. https://doi.org/10.1038/s41563-020-00906-z

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Wadman M, Couzin-Frankel J, Kaiser J, Matacic C (2020) A rampage through the body. Science. 368(6489):356–360. https://doi.org/10.1126/science.368.6489.356

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Pan Y et al (2020) Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect 81:e28–e32. https://doi.org/10.1016/j.jinf.2020.03.051

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Dennis JM, Mateen BA, Sonabend R et al (2021) Type 2 diabetes and COVID-19-Related mortality in the critical care setting: a national cohort study in England, March-July 2020. Diabetes Care 44(1):50–57. https://doi.org/10.2337/dc20-1444

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Drucker DJ (2021) Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metab 33(3):479–498. https://doi.org/10.1016/j.cmet.2021.01.016

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    You JH, Lee SA, Chun SY et al (2020) Clinical outcomes of COVID-19 patients with type 2 diabetes: a population-based study in Korea. Endocrinol Metab (Seoul) 35(4):901–908. https://doi.org/10.3803/EnM.2020.787

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Orioli L, Servais T, Belkhir L et al (2021) Clinical characteristics and short-term prognosis of in-patients with diabetes and COVID-19: a retrospective study from an academic center in Belgium. Diabetes Metab Syndr 15(1):149–157. https://doi.org/10.1016/j.dsx.2020.12.020

    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Breining P, Frølund AL, Højen JF et al (2021) Camostat mesylate against SARS-CoV-2 and COVID-19-rationale, dosing and safety. Basic Clin Pharmacol Toxicol 128(2):204–212. https://doi.org/10.1111/bcpt.13533

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Lee LYW, Cazier JB, Starkey T et al (2020) COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol 21(10):1309–1316. https://doi.org/10.1016/S1470-2045(20)30442-3

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Yang K, Sheng Y, Huang C et al (2020) Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol 21(7):904–913. https://doi.org/10.1016/S1470-2045(20)30310-7

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Kuderer NM, Choueiri TK, Shah DP et al (2020) Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet 395(10241):1907–1918. https://doi.org/10.1016/S0140-6736(20)31187-9

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Dai M, Liu D, Liu M et al (2020) Patients with cancer appear more vulnerable to SARS-CoV-2: a multicenter study during the COVID-19 outbreak. Cancer Discov 10(6):783–791. https://doi.org/10.1158/2159-8290

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Codo AC, Davanzo GG, Monteiro LB et al (2020) Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab 32(3):498–499. https://doi.org/10.1016/j.cmet.2020.07.015

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Miners S, Kehoe PG, Love S (2020) Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther 12(1):170. https://doi.org/10.1186/s13195-020-00744-w

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Lemprière S (2020) SARS-CoV-2 and the brain to be studied long-term. Nat Rev Neurol 16(10):522. https://doi.org/10.1038/s41582-020-0405-8

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Ellul MA, Benjamin L, Singh B et al (2020) Neurological associations of COVID-19. Lancet Neurol 19(9):767–783. https://doi.org/10.1016/S1474-4422(20)30221-0

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Ahmed MU, Hanif M, Ali MJ et al (2020) Neurological manifestations of COVID-19 (SARS-CoV-2): a review. Front Neurol 11:518. https://doi.org/10.3389/fneur.2020.00518

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Acharya A, Kevadiya BD, Gendelman HE, Byrareddy SN (2020) SARS-CoV-2 infection leads to neurological dysfunction. J NeuroImmune Pharmacol 15(2):167–173. https://doi.org/10.1007/s11481-020-09924-9

    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Abate G, Memo M, Uberti D (2020) Impact of COVID-19 on Alzheimer’s disease risk: viewpoint for research action. Healthcare (Basel) 8(3):E286. https://doi.org/10.3390/healthcare8030286

    Article 

    Google Scholar
     

  • 51.

    Numbers K, Brodaty H (2021) The effects of the COVID-19 pandemic on people with dementia. Nat Rev Neurol 17(2):69–70. https://doi.org/10.1038/s41582-020-00450-z

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Puelles VG, Lütgehetmann M, Lindenmeyer MT et al (2020) Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 383(6):590–592. https://doi.org/10.1056/NEJMc2011400

    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Martinez-Rojas MA, Vega-Vega O, Bobadilla NA (2020) Is the kidney a target of SARS-CoV-2? Am J Physiol Ren Physiol 318(6):F1454–F1462. https://doi.org/10.1152/ajprenal.00160.2020

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Braun F, Lütgehetmann M, Pfefferle S et al (2020) SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet 396(10251):597–598. https://doi.org/10.1016/S0140-6736(20)31759-1

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Zhang C, Shi L, Wang FS (2020) Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 5(5):428–430. https://doi.org/10.1016/S2468-1253(20)30057-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Wu J, Song S, Cao HC, Li LJ (2020) Liver diseases in COVID-19: etiology, treatment and prognosis. World J Gastroenterol 26(19):2286–2293. https://doi.org/10.3748/wjg.v26.i19.2286

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Lozano-Sepulveda SA, Galan-Huerta K, Martínez-Acuña N, Arellanos-Soto D, Rivas-Estilla AM (2020) SARS-CoV-2 another kind of liver aggressor, how does it do that? Ann Hepatol 19(6):592–596. https://doi.org/10.1016/j.aohep.2020.08.062

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Lindner D, Fitzek A, Bräuninger H et al (2020) Association of cardiac infection With SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol 5(11):1281–1285. https://doi.org/10.1001/jamacardio.2020.3551

    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Wu L, O’Kane AM, Peng H, Bi Y, Motriuk-Smith D, Ren J (2020) SARS-CoV-2 and cardiovascular complications: from molecular mechanisms to pharmaceutical management. Biochem Pharmacol 178:114114. https://doi.org/10.1016/j.bcp.2020.114114

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P (2020) SARS-CoV-2 infection and cardiovascular disease: COVID-19 heart. Heart Lung Circ 29(7):973–987. https://doi.org/10.1016/j.hlc.2020.05.101

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC (2020) COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 17(9):543–558. https://doi.org/10.1038/s41569-020-0413-9

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 62.

    Ma D, Chen CB, Jhanji V et al (2020) Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye (Lond) 34(7):1212–1219. https://doi.org/10.1038/s41433-020-0939-4

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Chen X, Yu H, Mei T et al (2020) SARS-CoV-2 on the ocular surface: is it truly a novel transmission route? Br J Ophthalmol:bjophthalmol-2020-316263. https://doi.org/10.1136/bjophthalmol-2020-316263

  • 64.

    Pérez-Bartolomé F, Sánchez-Quirós J (2021) Ocular manifestations of SARS-CoV-2: literature review. Arch Soc Esp Oftalmol (Engl Ed) 96(1):32–40. https://doi.org/10.1016/j.oftale.2020.07.003

    Article 

    Google Scholar
     

  • 65.

    Loon SC, Teoh SC, Oon LL et al (2004) The severe acute respiratory syndrome coronavirus in tears. Br J Ophthalmol 88(7):861–863. https://doi.org/10.1136/bjo.2003.035931

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Pak A, Adegboye OA, Adekunle AI, Rahman KM, McBryde ES, Eisen DP (2020) Economic consequences of the COVID-19 outbreak: the need for epidemic preparedness. Front Public Health 8:241. https://doi.org/10.3389/fpubh.2020.00241

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C (2020) Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 157:104859. https://doi.org/10.1016/j.phrs.2020.104859

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280. https://doi.org/10.1016/j.cell.2020.02.052

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S (2020) Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother 64(6):e00754–e00720. https://doi.org/10.1128/AAC.00754-20

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Stahlmann R, Lode H (2020) Medication for COVID-19-an overview of approaches currently under study. Dtsch Arztebl Int 117(13):213–219. https://doi.org/10.3238/arztebl.2020.0213

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Yao X, Ye F, Zhang M et al (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71(15):732–739. https://doi.org/10.1093/cid/ciaa237

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Rogosnitzky M, Okediji P, Koman I (2020) Cepharanthine: a review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharmacol Rep 72(6):1509–1516. https://doi.org/10.1007/s43440-020-00132-z

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Sharun K, Dhama K, Patel SK et al (2020) Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Ann Clin Microbiol Antimicrob 19(1):23. https://doi.org/10.1186/s12941-020-00368-w

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Fan HH, Wang LQ, Liu WL et al (2020) Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J 133(9):1051–1056. https://doi.org/10.1097/CM9.0000000000000797

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Verma S, Twilley D, Esmear T et al (2020) Anti-SARS-CoV natural products with the Potential to inhibit SARS-CoV-2 (COVID-19). Front Pharmacol 11:561334. https://doi.org/10.3389/fphar.2020.561334

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Valle C, Martin B, Touret F et al (2020) Drugs against SARS-CoV-2: what do we know about their mode of action? Rev Med Virol 30(6):1–10. https://doi.org/10.1002/rmv.2143

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 77.

    Zhou G, Zhao Q (2020) Perspectives on therapeutic neutralizing antibodies against the novel coronavirus SARS-CoV-2. Int J Biol Sci 16(10):1718–1723. https://doi.org/10.7150/ijbs.45123

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Yuan C, Li R, Liu G, Pan Y (2021) Potential of immune-related therapy in COVID-19. Front Pharmacol 11:609212. https://doi.org/10.3389/fphar.2020.609212

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Ahmad W, Ebert PR (2018) 5-Methoxyindole-2-carboxylic acid (MICA) suppresses Aβ-mediated pathology in C. elegans. Exp Gerontol 108:215–225. https://doi.org/10.1016/j.exger.2018.04.021

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Ahmad W (2018) Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer’s disease. Exp Brain Res 236(11):2857–2866. https://doi.org/10.1007/s00221-018-5341-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 81.

    Ahmad W, Ebert PR (2017) Metformin attenuates Aβ pathology mediated through levamisole sensitive nicotinic acetylcholine receptors in a C. elegans model of Alzheimer’s disease. Mol Neurobiol 54(7):5427–5439. https://doi.org/10.1007/s12035-016-0085-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Ahmad W, Ebert PR (2020) Suppression of a core metabolic enzyme dihydrolipoamide dehydrogenase (dld) protects against amyloid beta toxicity in C. elegans model of Alzheimer’s disease. Genes Dis. https://doi.org/10.1016/j.gendis.2020.08.004

  • 83.

    Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B (2019) Gene silencing strategies in cancer therapy: an update for drug resistance. Curr Med Chem 26(34):6282–6303. https://doi.org/10.2174/0929867325666180403141554

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 84.

    Uludag H, Parent K, Aliabadi HM, Haddadi A (2020) Prospects for RNAi therapy of COVID-19. Front Bioeng Biotechnol 8:916. https://doi.org/10.3389/fbioe.2020.00916

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)