• 1.

    Veilleux A, Di Marzo V, Silvestri C. The expanded endocannabinoid system/endocannabinoidome as a potential target for treating diabetes mellitus. Curr Diab Rep. 2019;19:117.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Silver RJ. The endocannabinoid system of animals. Animals (Basel). 2019;9(9):686.


    Google Scholar
     

  • 3.

    Schwitzer T, Schwan R, Angioi-Duprez K, Giersch A, Laprevote V. The endocannabinoid system in the retina: from physiology to practical and therapeutic applications. Neural Plast. 2016;2016:2916732.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Di Marzo V, Fontana A. Anandamide, an endogenous cannabinomimetic eicosanoid: ‘killing two birds with one stone’. Prostaglandins, Leukot Essent Fat Acids. 1995;53:1–11.


    Google Scholar
     

  • 5.

    Fontana A, Di Marzo V, Cadas H, Piomelli D. Analysis of anandamide, an endogenous cannabinoid substance, and of other natural N-acylethanolamines. Prostaglandins Leukot Essent Fat Acids. 1995;53:301–8.

    CAS 

    Google Scholar
     

  • 6.

    Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018;19(3):833.

    PubMed Central 

    Google Scholar
     

  • 7.

    Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther. 2010;126:21–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Miller LK, Devi LA. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev. 2011;63:461–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Haddad M. The impact of CB1 receptor on inflammation in skeletal muscle cells. J Inflamm Res. 2021;14:3959–67.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Haddad M. The impact of CB1 receptor on nuclear receptors in skeletal muscle cells. Pathophysiology. 2021;28:457–70.


    Google Scholar
     

  • 11.

    Iannotti FA, Pagano E, Guardiola O, Adinolfi S, Saccone V, Consalvi S, et al. Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nat Commun. 2018;9:3950.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Turcotte C, Blanchet M-R, Laviolette M, Flamand N. The CB2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci. 2016;73:4449–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Di Marzo V, Wang J. The endocannabinoidome. 1st ed. London: Academic Press; 2015.


    Google Scholar
     

  • 14.

    Di Marzo V, Piscitelli F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics. 2015;12:692–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17:623–39.

    PubMed 

    Google Scholar
     

  • 16.

    Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther. 2011;132:215–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Han JH, Shin H, Park J-Y, Rho JG, Son DH, Kim KW, et al. A novel peripheral cannabinoid 1 receptor antagonist, AJ5012, improves metabolic outcomes and suppresses adipose tissue inflammation in obese mice. FASEB J. 2019;33:4314–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Balla A, Dong B, Shilpa BM, Vemuri K, Makriyannis A, Pandey SC, et al. Cannabinoid-1 receptor neutral antagonist reduces binge-like alcohol consumption and alcohol-induced accumbal dopaminergic signaling. Neuropharmacology. 2018;131:200–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A guide to targeting the endocannabinoid system in drug design. Int J Mol Sci. 2020;21:2778.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 20.

    Sam AH, Salem V, Ghatei MA. Rimonabant: from RIO to ban. J Obes. 2011;2011:432607.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Hossain MA, Pervin R, Debnath D, Bhuiyan MA. Chapter 30 – Therapeutic treatment for controlling childhood obesity. In: Bagchi D, editor. Global Perspectives on Childhood Obesity. (Second Edition) ed: Academic Press; 2019. p. 377–85.

  • 22.

    O’Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol. 2016;173:1899–910.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    McHugh D, Page J, Dunn E, Bradshaw HB. Δ(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br J Pharmacol. 2012;165:2414–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson N-O, Leonova J, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Godlewski G, Offertáler L, Wagner JA, Kunos G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat. 2009;89:105–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting TRP channels. Front Mol Neurosci. 2018;11:487.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Fezza F, Bari M, Florio R, Talamonti E, Feole M, Maccarrone M. Endocannabinoids, related compounds and their metabolic routes. Molecules. 2014;19:17078–106.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Depommier C, Flamand N, Pelicaen R, Maiter D, Thissen J-P, Loumaye A, et al. Linking the endocannabinoidome with specific metabolic parameters in an overweight and insulin-resistant population: from multivariate exploratory analysis to univariate analysis and construction of predictive models. Cells. 2021;10:E71.

    PubMed 

    Google Scholar
     

  • 29.

    Sihag J, Jones PJH. Oleoylethanolamide: the role of a bioactive lipid amide in modulating eating behaviour. Obes Rev. 2018;19:178–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Castonguay-Paradis S, Lacroix S, Rochefort G, Parent L, Perron J, Martin C, et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci Rep. 2020;10.

  • 31.

    Sihag J. The action of oleic acid, oleoylethanolamide and allied genetic variants in influencing body composition. Doctoral dissertation: University of Manitoba; 2019.


    Google Scholar
     

  • 32.

    Sihag J, Jones PJH. Dietary fatty acid composition impacts plasma fatty acid ethanolamide levels and body composition in golden Syrian hamsters. Food Funct. 2018;9:3351–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Sihag J, Jones PJH. Dietary fatty acid profile influences circulating and tissue fatty acid ethanolamide concentrations in a tissue-specific manner in male Syrian hamsters. Biochim Biophys Acta Mol Cell Biol Lipids. 1864;2019:1563–79.


    Google Scholar
     

  • 34.

    Salazar N, Neyrinck AM, Bindels LB, Druart C, Ruas-Madiedo P, Cani PD, et al. Functional effects of EPS-producing bifidobacterium administration on energy metabolic alterations of diet-induced obese mice. Front Microbiol. 2019;10:1809.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Bradshaw HB, Walker JM. The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol. 2005;144:459–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Di Marzo V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders. Dialogues Clin Neurosci. 2020;22:259–69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Coulon D, Faure L, Salmon M, Wattelet V, Bessoule J-J. Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE). Biochimie. 2012;94:75–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    De Luca L, Ferracane R, Vitaglione P. Food database of N-acyl-phosphatidylethanolamines, N-acylethanolamines and endocannabinoids and daily intake from a Western, a Mediterranean and a vegetarian diet. Food Chem. 2019;300:125218.

    PubMed 

    Google Scholar
     

  • 39.

    Sirrs S, van Karnebeek CDM, Peng X, Shyr C, Tarailo-Graovac M, Mandal R, et al. Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms. Orphanet J Rare Dis. 2015;10:38.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem. 2006;281:36569–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Di Marzo V, De Petrocellis L. Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond B Biol Sci. 2012;367:3216–28.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Goñi FM, Alonso A. Structure and functional properties of diacylglycerols in membranes. Progress in Lipid Research. 1999;38:1–48.

    PubMed 

    Google Scholar
     

  • 43.

    Battista N, Bari M, Bisogno T. N-acyl amino acids: metabolism, molecular targets, and role in biological processes. Biomolecules. 2019;9:822.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 44.

    Tan B, O’Dell DK, Yu YW, Monn MF, Hughes HV, Burstein S, et al. Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J Lipid Res. 2010;51:112–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Bowen KJ, Kris-Etherton PM, Shearer GC, West SG, Reddivari L, Jones PJH. Oleic acid-derived oleoylethanolamide: a nutritional science perspective. Prog Lipid Res. 2017;67:1–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008;7:438–55.

    PubMed 

    Google Scholar
     

  • 47.

    Artmann A, Petersen G, Hellgren LI, Boberg J, Skonberg C, Nellemann C, et al. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim Biophys Acta. 1781;2008:200–12.


    Google Scholar
     

  • 48.

    Impellizzeri D, Peritore AF, Cordaro M, Gugliandolo E, Siracusa R, Crupi R, et al. The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice. FASEB J. 2019;33:11364–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Annunziata C, Lama A, Pirozzi C, Cavaliere G, Trinchese G, Guida FD, et al. Palmitoylethanolamide counteracts hepatic metabolic inflexibility modulating mitochondrial function and efficiency in diet-induced obese mice. FASEB J. 2020;34:350–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8(8):902.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Keppel Hesselink JM, de Boer T, Witkamp RF. Palmitoylethanolamide: a natural body-own anti-inflammatory agent, effective and safe against influenza and common cold. Int J Inflam. 2013;2013:151028.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Ueda N. Endocannabinoid hydrolases. Prostaglandins Other Lipid Mediat. 2002;68–69:521–34.

    PubMed 

    Google Scholar
     

  • 53.

    Wang L, Xu F, Song Z, Han D, Zhang J, Chen L, et al. A high fat diet with a high C18:0/C16:0 ratio induced worse metabolic and transcriptomic profiles in C57BL/6 mice. Lipids in Health and Disease. 2020;19:172.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: a natural compound for health management. Int J Mol Sci. 2021;22:5305.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Ambrosino P, Soldovieri MV, Russo C, Taglialatela M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARα agonist palmitoylethanolamide. Br J Pharmacol. 2013;168:1430–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Petrosino S, Schiano Moriello A, Verde R, Allarà M, Imperatore R, Ligresti A, et al. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J Neuroinflammation. 2019;16:274.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    LoVerme J, La Rana G, Russo R, Calignano A, Piomelli D. The search for the palmitoylethanolamide receptor. Life Sci. 2005;77:1685–98.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017;174:1349–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Misto A, Provensi G, Vozella V, Passani MB, Piomelli D. Mast cell-derived histamine regulates liver ketogenesis via oleoylethanolamide signaling. Cell Metab. 2019;29(e5):91–102.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Maleki V. The effects of oleoylethanolamide, an endogenous PPAR-α agonist, on risk factors for NAFLD: a systematic review. Obes Rev. 2019;20:1057–69.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Brown JD, Karimian Azari E, Ayala JE. Oleoylethanolamide: a fat ally in the fight against obesity. Physiol Behav. 2017;176:50–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Piomelli D. A fatty gut feeling. Trends Endocrinol Metab. 2013;24:332–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Hosseinzadeh-Attar M-J, Shakeri A, Asghari-Jafarabadi M, et al. Oleoylethanolamide supplementation in obese patients newly diagnosed with non-alcoholic fatty liver disease: effects on metabolic parameters, anthropometric indices, and expression of PPAR-α, UCP1, and UCP2 genes. Pharmacol Res. 2020;156:104770.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Mennella I, Savarese M, Ferracane R, Sacchi R, Vitaglione P. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans. Food Funct. 2015;6:204–10.

    PubMed 

    Google Scholar
     

  • 66.

    Mutch DM, Lowry DE, Roth M, Sihag J, Hammad SS, Taylor CG, et al. Polymorphisms in the stearoyl-CoA desaturase gene modify blood glucose response to dietary oils varying in MUFA content in adults with obesity. Br J Nutr. 2021:1–10.

  • 67.

    Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414:209–12.

    PubMed 

    Google Scholar
     

  • 68.

    Rebello CJ, O’Neil CE, Greenway FL. Gut fat signaling and appetite control with special emphasis on the effect of thylakoids from spinach on eating behavior. Int J Obes. 2015;39:1679–88.

    CAS 

    Google Scholar
     

  • 69.

    Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res. 2014;86:18–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Sihag J, MacKay DS, Hammad SS, Chen X, Bowen KJ, Eck P, et al. Energy and Macronutrient Metabolism. Plasma oleoylethanolamide concentrations associate with GPR40 rs1573611 variations in participants from the Canola Oil Multi-Centre Intervention Trial 2 (COMIT 2) (E06-04). Curr Dev Nutr. 2018;2:1–105.


    Google Scholar
     

  • 71.

    Li Y, Chen X, Nie Y, Tian Y, Xiao X, Yang F. Endocannabinoid activation of the TRPV1 ion channel is distinct from activation by capsaicin. J Biol Chem. 2021;297:101022.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    DiPatrizio NV, Piomelli D. Intestinal lipid–derived signals that sense dietary fat. J Clin Invest. 2015;125:891–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Tovar R, Gavito AL, Vargas A, Soverchia L, Hernandez-Folgado L, Jagerovic N, et al. Palmitoleoylethanolamide is an efficient anti-obesity endogenous compound: comparison with oleylethanolamide in diet-induced obesity. Nutrients. 2021;13:2589.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Di Marzo V, Silvestri C. Lifestyle and metabolic syndrome: contribution of the endocannabinoidome. Nutrients. 2019;11.

  • 75.

    Alvheim AR, Torstensen BE, Lin YH, Lillefosse HH, Lock E-J, Madsen L, et al. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. Lipids. 2014;49:59–69.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Hansen HS, Artmann A. Endocannabinoids and nutrition. J Neuroendocrinol. 2008;20(Suppl 1):94–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Harrison S, Brassard D, Lemieux S, Lamarche B. Consumption and sources of saturated fatty acids according to the 2019 canada food guide: data from the 2015 canadian community health survey. Nutrients. 2019;11:1964.

    PubMed Central 

    Google Scholar
     

  • 78.

    Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol. 2009;78:553–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Bowen KJ, Kris-Etherton PM, West SG, Fleming JA, Connelly PW, Lamarche B, et al. Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity. J Nutr. 2019;149:471–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Clarke TL, Johnson RL, Simone JJ, Carlone RL. The endocannabinoid system and invertebrate neurodevelopment and regeneration. Int J Mol Sci. 2021;22:2103.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Shahbazi F, Grandi V, Banerjee A, Trant JF. Cannabinoids and cannabinoid receptors: the story so far. iScience. 2020;23:101301.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    de Almeida DL, Devi LA. Diversity of molecular targets and signaling pathways for CBD. Pharmacol Res Perspect. 2020;8:e00682.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Silvestro S, Schepici G, Bramanti P, Mazzon E. Molecular targets of cannabidiol in experimental models of neurological disease. Molecules. 2020;25:E5186.

    PubMed 

    Google Scholar
     

  • 84.

    Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Pina SD, et al. Cannabidiol: recent advances and new insights for neuropsychiatric disorders treatment. Life Sci. 2019;224:120–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Brenna JT, Plourde M, Stark KD, Jones PJ, Lin Y-H. Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids. Am J Clin Nutr. 2018;108:211–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci Nutr. 2021;61:1725–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Paton KF, Shirazi R, Vyssotski M, Kivell BM. N-docosahexaenoyl ethanolamine (synaptamide) has antinociceptive effects in male mice. Eur J Pain. 2020;24:1990–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Pertwee RG. Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol. 2015;231:1–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Ho M, Anderson GH, Lin L, Bazinet RP, Kubant R. Ethanolamides of essential α-linolenic and linoleic fatty acids suppress short-term food intake in rats. Food Funct. 2020;11:3066–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Kim J, Carlson ME, Kuchel GA, Newman JW, Watkins BA. Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. Int J Obes (Lond). 2016;40:129–37.

    CAS 

    Google Scholar
     

  • 91.

    Murru E, Lopes PA, Carta G, Manca C, Abolghasemi A, Guil-Guerrero JL, et al. Different dietary n-3 polyunsaturated fatty acid formulations distinctively modify tissue fatty acid and N-acylethanolamine profiles. Nutrients. 2021;13:625.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Manchanda M, Leishman E, Sangani K, Alamri A, Bradshaw HB. Activation of TRPV1 by capsaicin or heat drives changes in 2-acyl glycerols and N-acyl ethanolamines in a time, dose, and temperature dependent manner. Front Cell Dev Biol. 2021;9:611952.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013;27:459–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Mu H, Porsgaard T. The metabolism of structured triacylglycerols. Prog Lipid Res. 2005;44:430–48.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Baggelaar MP, Maccarrone M, van der Stelt M. 2-arachidonoylglycerol: a signaling lipid with manifold actions in the brain. Prog Lipid Res. 2018;71:1–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Yuan D, Wu Z, Wang Y. Evolution of the diacylglycerol lipases. Prog Lipid Res. 2016;64:85–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Pertwee RG. Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proc Nutr Soc. 2014;73:96–105.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Dovale-Rosabal G, Rodríguez A, Espinosa A, Barriga A, Aubourg SP. Synthesis of EPA- and DHA-enriched structured acylglycerols at the sn-2 position starting from commercial salmon oil by enzymatic lipase catalysis under supercritical conditions. Molecules. 2021;26:3094.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab. 2017;19(Suppl 1):76–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10:582–602.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related mediators: targets, metabolism and role in neurological disorders. Prog Lipid Res. 2016;62:107–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Müller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72–130.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Zhao J, Zhao Y, Hu Y, Peng J. Targeting the GPR119/incretin axis: a promising new therapy for metabolic-associated fatty liver disease. Cell Mol Biol Lett. 2021;26:32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Marzo VD, Wang J. The endocannabinoidome: the world of endocannabinoids and related mediators: Academic Press; 2014.


    Google Scholar
     

  • 106.

    Burstein SH. N-acyl amino acids (elmiric acids): endogenous signaling molecules with therapeutic potential. Mol Pharmacol. 2018;93:228–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Burstein S. The elmiric acids: biologically active anandamide analogs. Neuropharmacology. 2008;55:1259–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Kim JT, Terrell SM, Li VL, Wei W, Fischer CR, Long JZ. Cooperative enzymatic control of N-acyl amino acids by PM20D1 and FAAH. Elife. 2020;9:e55211.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Long JZ, Roche AM, Berdan CA, Louie SM, Roberts AJ, Svensson KJ, et al. Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc Natl Acad Sci U S A. 2018;115:E6937–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Lin H, Long JZ, Roche AM, Svensson KJ, Dou FY, Chang MR, et al. Discovery of hydrolysis-resistant isoindoline N-acyl amino acid analogues that stimulate mitochondrial respiration. J Med Chem. 2018;61:3224–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Rock EM, Limebeer CL, Sullivan MT, DeVuono MV, Lichtman AH, Di Marzo V, et al. N-oleoylglycine and N-oleoylalanine do not modify tolerance to nociception, hyperthermia, and suppression of activity produced by morphine. Front Synaptic Neurosci. 2021;13:620145.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Fotio Y, Palese F, Guaman Tipan P, Ahmed F, Piomelli D. Inhibition of fatty acid amide hydrolase in the CNS prevents and reverses morphine tolerance in male and female mice. Br J Pharmacol. 2020;177:3024–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 113.

    Ayoub SM, Smoum R, Farag M, Atwal H, Collins SA, Rock EM, et al. Oleoyl alanine (HU595): a stable monomethylated oleoyl glycine interferes with acute naloxone precipitated morphine withdrawal in male rats. Psychopharmacology (Berl). 2020;237:2753–65.

    CAS 

    Google Scholar
     

  • 114.

    Anderson RL, Merkler DJ. N-fatty acylglycines: underappreciated endocannabinoid-like fatty acid amides? J Biol Nat. 2017;8:156–65.

    PubMed 

    Google Scholar
     

  • 115.

    Kohno M, Hasegawa H, Inoue A, Muraoka M, Miyazaki T, Oka K, et al. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem Biophys Res Commun. 2006;347:827–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Console-Bram L, Ciuciu SM, Zhao P, Zipkin RE, Brailoiu E, Abood ME. N-arachidonoyl glycine, another endogenous agonist of GPR55. Biochem Biophys Res Commun. 2017;490:1389–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Oh DY, Yoon JM, Moon MJ, Hwang J-I, Choe H, Lee JY, et al. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J Biol Chem. 2008;283:21054–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Liu P, Duan J, Wang P, Qian D, Guo J, Shang E, et al. Biomarkers of primary dysmenorrhea and herbal formula intervention: an exploratory metabonomics study of blood plasma and urine. Mol Biosyst. 2013;9:77–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Baumann J, Kokabee M, Wong J, Balasubramaniyam R, Sun Y, Conklin DS. Global metabolite profiling analysis of lipotoxicity in HER2/neu-positive breast cancer cells. Oncotarget. 2018;9:27133–50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Arul Prakash S, Kamlekar RK. Function and therapeutic potential of N-acyl amino acids. Chem Phys Lipids. 2021;239:105114.

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Piscitelli F, Guida F, Luongo L, Iannotti FA, Boccella S, Verde R, et al. Protective effects of N-oleoylglycine in a mouse model of mild traumatic brain injury. ACS Chem Neurosci. 2020;11:1117–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Rock EM, Ayoub SM, Limebeer CL, Gene A, Wills KL, DeVuono MV, et al. Acute naloxone-precipitated morphine withdrawal elicits nausea-like somatic behaviors in rats in a manner suppressed by N-oleoylglycine. Psychopharmacology (Berl). 2020;237:375–84.

    CAS 

    Google Scholar
     

  • 123.

    Smoum R, Bar A, Tan B, Milman G, Attar-Namdar M, Ofek O, et al. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. Proc Natl Acad Sci U S A. 2010;107:17710–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Baraghithy S, Smoum R, Attar-Namdar M, Mechoulam R, Bab I, Tam J. HU-671, a novel oleoyl serine derivative, exhibits enhanced efficacy in reversing ovariectomy-induced osteoporosis and bone marrow adiposity. Molecules. 2019;24:E3719.

    PubMed 

    Google Scholar
     

  • 125.

    Saghatelian A, McKinney MK, Bandell M, Patapoutian A, Cravatt BF. A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry. 2006;45:9007–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Zhang M, Ruwe D, Saffari R, Kravchenko M, Zhang W. Effects of TRPV1 activation by capsaicin and endogenous N-arachidonoyl taurine on synaptic transmission in the prefrontal cortex. Front Neurosci. 2020;14:91.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Sasso O, Pontis S, Armirotti A, Cardinali G, Kovacs D, Migliore M, et al. Endogenous N-acyl taurines regulate skin wound healing. Proc Natl Acad Sci U S A. 2016;113:E4397–406.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Bradshaw HB, Leishman E. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine. J Basic Clin Physiol Pharmacol. 2016;27:247–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic efficacy of palmitoylethanolamide and its new formulations in synergy with different antioxidant molecules present in diets. Nutrients. 2019;11.

  • 130.

    Bachur NR, Masek K, Melmon KL, Udenfriend S. Fatty acid amides of ethanolamine in mammalian tissues. J Biol Chem. 1965;240:1019–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Paladini A, Fusco M, Cenacchi T, Schievano C, Piroli A, Varrassi G. Palmitoylethanolamide, a special food for medical purposes, in the treatment of chronic pain: a pooled data meta-analysis. Pain Physician. 2016;19:11–24.

    PubMed 

    Google Scholar
     

  • 132.

    Rankin L, Fowler CJ. The basal pharmacology of palmitoylethanolamide. Int J Mol Sci. 2020;21:E7942.

    PubMed 

    Google Scholar
     

  • 133.

    Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68:915–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Popeijus HE, van Otterdijk SD, van der Krieken SE, Konings M, Serbonij K, Plat J, et al. Fatty acid chain length and saturation influences PPARα transcriptional activation and repression in HepG2 cells. Mol Nutr Food Res. 2014;58:2342–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 135.

    Gabrielsson L, Gouveia-Figueira S, Häggström J, Alhouayek M, Fowler CJ. The anti-inflammatory compound palmitoylethanolamide inhibits prostaglandin and hydroxyeicosatetraenoic acid production by a macrophage cell line. Pharmacol Res Perspect. 2017;5:e00300.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Carta G, Murru E, Lisai S, Sirigu A, Piras A, Collu M, et al. Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS ONE. 2015;10:e0120424.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Matias I, Carta G, Murru E, Petrosino S, Banni S, Di Marzo V. Effect of polyunsaturated fatty acids on endocannabinoid and N-acyl-ethanolamine levels in mouse adipocytes. Biochim Biophys Acta. 1781;2008:52–60.


    Google Scholar
     

  • 138.

    Kuehl FA, Jacob TA, Ganley OH, Ormond RE, Meisinger MAP. The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J Am Chem Soc. 1957;79:5577–8.

    CAS 

    Google Scholar
     

  • 139.

    Long DA, Martin AJ. Factor in arachis oil depressing sensitivity to tuberculin in B.C.G.-infected guineapigs. Lancet. 1956;270:464–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Coburn AF, Moore LV. Nutrition as a conditioning factor in the rheumatic state. Am J Dis Children. 1943;65:744–56.


    Google Scholar
     

  • 141.

    Wallis AD. Dietary eggs and rheumatic fever. Am J Med Sci. 1954;227:167–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Coburn AF, Graham CE, Haninger J. The effect of egg yolk in diets on anaphylactic arthritis (passive Arthus phenomenon) in the guinea pig. J Exp Med. 1954;100:425–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Gibney MJ, Lanham-New SA, Cassidy A, Vorster HH. Introduction to human nutrition. 2nd ed: Wiley-Blackwell; 2013.


    Google Scholar
     

  • 144.

    Cunnane SC, Horrobin DF, Manku MS. Contrasting effects of low or high copper intake on rat tissue lipid essential fatty acid composition. Ann Nutr Metab. 1985;29:103–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 145.

    Ho SK, Elliot JI, Jones GM. Effects of copper on performance, fatty acid composition of depot fat and fatty acyl desaturase activities in pigs fed a diet with or without supplemental copper. Can J Anim Sci. 1975;55:587–94.

    CAS 

    Google Scholar
     

  • 146.

    Bourre J-ME, Dumont OL, Clément ME, Durand GA. Endogenous synthesis cannot compensate for absence of dietary oleic acid in rats. J Nutr. 1997;127:488–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Igarashi M, DiPatrizio NV, Narayanaswami V, Piomelli D. Feeding-induced oleoylethanolamide mobilization is disrupted in the gut of diet-induced obese rodents. Biochim Biophys Acta. 1851;2015:1218–26.


    Google Scholar
     

  • 148.

    Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341:800–2.

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Giudetti AM, Vergara D, Longo S, Friuli M, Eramo B, Tacconi S, et al. Oleoylethanolamide reduces hepatic oxidative stress and endoplasmic reticulum stress in high-fat diet-fed rats. Antioxidants (Basel). 2021;10:1289.

    CAS 

    Google Scholar
     

  • 150.

    Laleh P, Yaser K, Alireza O. Oleoylethanolamide: a novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol. 2019;234:7893–902.

    CAS 
    PubMed 

    Google Scholar
     

  • 151.

    De Luca L, Ferracane R, Calderón Ramírez N, Vitaglione P. N-Acylphosphatidylethanolamines and N-acylethanolamines increase in saliva upon food mastication: the influence of the individual nutritional status and fat type in food. Food Funct. 2020;11:3382–92.

    PubMed 

    Google Scholar
     

  • 152.

    Pu S, Eck P, Jenkins DJA, Connelly PW, Lamarche B, Kris-Etherton PM, et al. Interactions between dietary oil treatments and genetic variants modulate fatty acid ethanolamides in plasma and body weight composition. Br J Nutr. 2016;115:1012–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Liu X, Kris-Etherton PM, West SG, Lamarche B, Jenkins DJA, Fleming JA, et al. Effects of canola and high-oleic-acid canola oils on abdominal fat mass in individuals with central obesity. Obesity (Silver Spring). 2016;24:2261–8.

    CAS 

    Google Scholar
     

  • 154.

    Jones PJH, Lin L, Gillingham LG, Yang H, Omar JM. Modulation of plasma N-acylethanolamine levels and physiological parameters by dietary fatty acid composition in humans. J Lipid Res. 2014;55:2655–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Sihag J, Hammad SS, Bowen KJ, Eck P, Lamarche B, Rideout TC, et al. Effect of high-monounsaturated vs low-monounsaturated dietary fat and genotype pattern on plasma fatty acid ethanolamide concentrations. Unpublished work.

  • 156.

    Laleh P, Yaser K, Abolfazl B, Shahriar A, Mohammad AJ, Nazila F, et al. Oleoylethanolamide increases the expression of PPAR-Α and reduces appetite and body weight in obese people: a clinical trial. Appetite. 2018;128:44–9.

    PubMed 

    Google Scholar
     

  • 157.

    Grosshans M, Schwarz E, Bumb JM, Schaefer C, Rohleder C, Vollmert C, et al. Oleoylethanolamide and human neural responses to food stimuli in obesity. JAMA Psychiatr. 2014;71:1254–61.


    Google Scholar
     

  • 158.

    Mennella I, Ferracane R, Zucco F, Fogliano V, Vitaglione P. Food liking enhances the plasma response of 2-arachidonoylglycerol and of pancreatic polypeptide upon modified sham feeding in humans. J Nutr. 2015;145:2169–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Rigamonti AE, Piscitelli F, Aveta T, Agosti F, De Col A, Bini S, et al. Anticipatory and consummatory effects of (hedonic) chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults. Food Nutr Res. 2015;59:29678.

    PubMed 

    Google Scholar
     

  • 160.

    Monteleone AM, Di Marzo V, Aveta T, Piscitelli F, Dalle Grave R, Scognamiglio P, et al. Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa. Am J Clin Nutr. 2015;101:262–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 161.

    Monteleone AM, Di Marzo V, Monteleone P, Dalle Grave R, Aveta T, Ghoch ME, et al. Responses of peripheral endocannabinoids and endocannabinoid-related compounds to hedonic eating in obesity. Eur J Nutr. 2016;55:1799–805.

    CAS 
    PubMed 

    Google Scholar
     

  • 162.

    Fernández-Aranda F, Sauchelli S, Pastor A, Gonzalez ML, de la Torre R, Granero R, et al. Moderate-vigorous physical activity across body mass index in females: moderating effect of endocannabinoids and temperament. PLoS ONE. 2014;9:e104534.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 163.

    Tomassini Barbarossa I, Carta G, Murru E, Melis M, Zonza A, Vacca C, et al. Taste sensitivity to 6-n-propylthiouracil is associated with endocannabinoid plasma levels in normal-weight individuals. Nutrition. 2013;29:531–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 164.

    Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: association with diet and obesity. Prog Lipid Res. 2016;63:41–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 165.

    Chen CT, Bazinet RP. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fat Acids. 2015;92:33–40.

    CAS 

    Google Scholar
     

  • 166.

    Olatinsu AO, Sihag J, Jones PJH. Relationship between circulating fatty acids and fatty acid ethanolamide levels after a single 2-h dietary fat feeding in male Sprague-Dawley rats: elevated levels of oleoylethanolamide, palmitoylethanolamide, linoleoylethanolamide, arachidonoylethanolamide and docosahexanoylethanolamide after a single 2h dietary fat feeding in male Sprague Dawley rats. Lipids. 2017. https://doi.org/10.1007/s11745-017-4293-7.

  • 167.

    Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci U S A. 2001;98:6402–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 168.

    Alvheim AR, Torstensen BE, Lin YH, Lillefosse HH, Lock E-J, Madsen L, et al. Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice. Br J Nutr. 2013;109:1508–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 169.

    Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 2011;25:765–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 170.

    Everard A, Plovier H, Rastelli M, Van Hul M, de Wouters d’Oplinter A, Geurts L, et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat Commun. 2019;10:457.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 171.

    Demizieux L, Piscitelli F, Troy-Fioramonti S, Iannotti FA, Borrino S, Gresti J, et al. Early low-fat diet enriched with linolenic acid reduces liver endocannabinoid tone and improves late glycemic control after a high-fat diet challenge in mice. Diabetes. 2016;65:1824–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 172.

    Black IL, Roche HM, Tully A-M, Gibney MJ. Acute-on-chronic effects of fatty acids on intestinal triacylglycerol-rich lipoprotein metabolism. Br J Nutr. 2002;88:661–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 173.

    Banni S, Di Marzo V. Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood. Mol Nutr Food Res. 2010;54:82–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 174.

    Meijerink J, Balvers M, Witkamp R. N-acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids – from fishy endocannabinoids to potential leads. Br J Pharmacol. 2013;169:772–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 175.

    Mobraten K, Haug TM, Kleiveland CR, Lea T. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis. 2013;12:101.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 176.

    Rakotoarivelo V, Sihag J, Flamand N. Role of the endocannabinoid system in the adipose tissue with focus on energy metabolism. Cells. 2021;10:1279.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 177.

    Sheskin T, Hanus L, Slager J, Vogel Z, Mechoulam R. Structural requirements for binding of anandamide-type compounds to the brain cannabinoid receptor. J Med Chem. 1997;40:659–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 178.

    Bisogno T, Delton-Vandenbroucke I, Milone A, Lagarde M, Di Marzo V. Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina. Archives Biochem Biophys. 1999;370:300–7.

    CAS 

    Google Scholar
     

  • 179.

    Di Marzo V, Bisogno T, De Petrocellis L. Endocannabinoids and related compounds: walking back and forth between plant natural products and animal physiology. Chem Biol. 2007;14:741–56.

    PubMed 

    Google Scholar
     

  • 180.

    Hanus L, Gopher A, Almog S, Mechoulam R. Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med Chem. 1993;36:3032–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 181.

    Maccarrone M, Gasperi V, Catani MV, Diep TA, Dainese E, Hansen HS, et al. The endocannabinoid system and its relevance for nutrition. Annu Rev Nutr. 2010;30:423–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 182.

    Balvers MGJ, Verhoeckx KCM, Bijlsma S, Rubingh CM, Meijerink J, Wortelboer HM, et al. Fish oil and inflammatory status alter the n-3 to n-6 balance of the endocannabinoid and oxylipin metabolomes in mouse plasma and tissues. Metabolomics. 2012;8:1130–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 183.

    Wood JT, Williams JS, Pandarinathan L, Janero DR, Lammi-Keefe CJ, Makriyannis A. Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma. J Lipid Res. 2010;51:1416–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 184.

    Rossmeisl M, Jilkova ZM, Kuda O, Jelenik T, Medrikova D, Stankova B, et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. PLoS ONE. 2012;7:e38834.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 185.

    Meijerink J, Plastina P, Vincken J-P, Poland M, Attya M, Balvers M, et al. The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br J Nutr. 2011;105:1798–807.

    CAS 
    PubMed 

    Google Scholar
     

  • 186.

    Rapoport SI, Ramadan E, Basselin M. Docosahexaenoic acid (DHA) incorporation into the brain from plasma, as an in vivo biomarker of brain DHA metabolism and neurotransmission. Prostaglandins Other Lipid Mediat. 2011;96:109–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 187.

    Tsuboi K, Okamoto Y, Ikematsu N, Inoue M, Shimizu Y, Uyama T, et al. Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. Biochim Biophys Acta. 1811;2011:565–77.


    Google Scholar
     

  • 188.

    Kuipers EN, Kantae V, Maarse BCE, van den Berg SM, van Eenige R, Nahon KJ, et al. High fat diet increases circulating endocannabinoids accompanied by increased synthesis enzymes in adipose tissue. Front Physiol. 2018;9:1913.

    PubMed 

    Google Scholar
     

  • 189.

    Batetta B, Griinari M, Carta G, Murru E, Ligresti A, Cordeddu L, et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J Nutr. 2009;139:1495–501.

    CAS 
    PubMed 

    Google Scholar
     

  • 190.

    Piscitelli F, Carta G, Bisogno T, Murru E, Cordeddu L, Berge K, et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr Metab (Lond). 2011;8:51.

    CAS 

    Google Scholar
     

  • 191.

    Brown I, Wahle KWJ, Cascio MG, Smoum-Jaouni R, Mechoulam R, Pertwee RG, et al. Omega-3 N-acylethanolamines are endogenously synthesised from omega-3 fatty acids in different human prostate and breast cancer cell lines. Prostaglandins Leukot Essent Fat Acids. 2011;85:305–10.

    CAS 

    Google Scholar
     

  • 192.

    Rovito D, Giordano C, Vizza D, Plastina P, Barone I, Casaburi I, et al. Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCF-7 breast cancer cells. J Cell Physiol. 2013;228:1314–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 193.

    Balvers MGJ, Verhoeckx KCM, Plastina P, Wortelboer HM, Meijerink J, Witkamp RF. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim Biophys Acta. 1801;2010:1107–14.


    Google Scholar
     

  • 194.

    Kim H-Y, Spector AA, Xiong Z-M. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins Other Lipid Mediat. 2011;96:114–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 195.

    Kim H-Y, Moon H-S, Cao D, Lee J, Kevala K, Jun SB, et al. N-Docosahexaenoylethanolamide promotes development of hippocampal neurons. Biochem J. 2011;435:327–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 196.

    Berge K, Piscitelli F, Hoem N, Silvestri C, Meyer I, Banni S, et al. Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men. Lipids Health Dis. 2013;12:78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 197.

    Ramprasath VR, Eyal I, Zchut S, Shafat I, Jones PJH. Supplementation of krill oil with high phospholipid content increases sum of EPA and DHA in erythrocytes compared with low phospholipid krill oil. Lipids Health Dis. 2015;14:142.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 198.

    Ramprasath VR, Eyal I, Zchut S, Jones PJH. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil. Lipids Health Dis. 2013;12:178.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 199.

    Rossmeisl M, Pavlisova J, Janovska P, Kuda O, Bardova K, Hansikova J, et al. Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients. Biochim Biophys Acta Mol Cell Biol Lipids. 1863;2018:712–25.


    Google Scholar
     

  • 200.

    Kleberg K, Jacobsen AK, Ferreira JG, Windeløv JA, Rehfeld JF, Holst JJ, et al. Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol. J Physiol. 2015;593:2097–109.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 201.

    Mandøe MJ, Hansen KB, Hartmann B, Rehfeld JF, Holst JJ, Hansen HS. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans. Am J Clin Nutr. 2015;102:548–55.

    PubMed 

    Google Scholar
     

  • 202.

    Chon S-H, Zhou YX, Dixon JL, Storch J. Intestinal monoacylglycerol metabolism. J Biol Chem. 2007;282:33346–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 203.

    Ferreira JG, Tellez LA, Ren X, Yeckel CW, de Araujo IE. Regulation of fat intake in the absence of flavour signalling. J Physiol (Lond). 2012;590(Pt 4):953–72.

    CAS 

    Google Scholar
     

  • 204.

    Provensi G, Coccurello R, Umehara H, Munari L, Giacovazzo G, Galeotti N, et al. Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc Natl Acad Sci USA. 2014;111:11527–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 205.

    Koponen KK, Salosensaari A, Ruuskanen MO, Havulinna AS, Männistö S, Jousilahti P, et al. Associations of healthy food choices with gut microbiota profiles. Am J Clin Nutr. 2021;114:605–16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 206.

    Leeming ER, Johnson AJ, Spector TD, Le Roy CI. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients. 2019;11:E2862.

    PubMed 

    Google Scholar
     

  • 207.

    Daoust L, Pilon G, Marette A. Perspective: nutritional strategies targeting the gut microbiome to mitigate covid-19 outcomes. Adv Nutr. 2021;12:1074–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 208.

    Sanders LM, Zhu Y, Wilcox ML, Koecher K, Maki KC. Effects of whole grain intake, compared with refined grain, on appetite and energy intake: a systematic review and meta-analysis. Adv Nutri. 2021;12:1177–95.


    Google Scholar
     

  • 209.

    Grüner N, Mattner J. Bile acids and microbiota: multifaceted and versatile regulators of the liver-gut axis. Int J Mol Sci. 2021;22:1397.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 210.

    Cohen LJ, Esterhazy D, Kim S-H, Lemetre C, Aguilar RR, Gordon EA, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017;549:48–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 211.

    Chang F-Y, Siuti P, Laurent S, Williams T, Glassey E, Sailer AW, et al. Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat Microbiol. 2021;6:792–805.

    CAS 
    PubMed 

    Google Scholar
     

  • 212.

    Iannotti FA, Di Marzo V. The gut microbiome, endocannabinoids and metabolic disorders. J Endocrinol. 2021;248:R83–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 213.

    Esposito G, Capoccia E, Turco F, Palumbo I, Lu J, Steardo A, et al. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut. 2014;63:1300–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 214.

    Guida F, Boccella S, Belardo C, Iannotta M, Piscitelli F, De Filippis F, et al. Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain Behav Immun. 2020;85:128–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 215.

    Russo R, Cristiano C, Avagliano C, De Caro C, La Rana G, Raso GM, et al. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr Med Chem. 2018;25:3930–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 216.

    Maes M, Kubera M, Leunis J-C, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141:55–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 217.

    Wang S-Z, Yu Y-J, Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms. 2020;8:E527.

    PubMed 

    Google Scholar
     

  • 218.

    Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, et al. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. Nature. 2020;585:591–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 219.

    Benakis C, Martin-Gallausiaux C, Trezzi J-P, Melton P, Liesz A, Wilmes P. The microbiome-gut-brain axis in acute and chronic brain diseases. Curr Opin Neurobiol. 2020;61:1–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 220.

    Mansur RB, Zugman A, Ahmed J, Cha DS, Subramaniapillai M, Lee Y, et al. Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontal-striatal brain structures in individuals with mood disorders. Eur Neuropsychopharmacol. 2017;27:1153–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 221.

    Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics. 2018;15:36–59.

    CAS 
    PubMed 

    Google Scholar
     

  • 222.

    Borrelli F, Romano B, Petrosino S, Pagano E, Capasso R, Coppola D, et al. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br J Pharmacol. 2015;172:142–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 223.

    Cani PD. Microbiota and metabolites in metabolic diseases. Nat Rev Endocrinol. 2019;15:69–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 224.

    Di Paola M, Bonechi E, Provensi G, Costa A, Clarke G, Ballerini C, et al. Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer’s patches of mice. Sci Rep. 2018;8:14881.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 225.

    Lacroix S, Pechereau F, Leblanc N, Boubertakh B, Houde A, Martin C, et al. Rapid and concomitant gut microbiota and endocannabinoidome response to diet-induced obesity in mice. mSystems. 2019;4:e00407–19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 226.

    Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res. 2020;61:70–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 227.

    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS. 2013;110:9066–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 228.

    Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, et al. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: a randomized clinical trial. Appetite. 2019;141:104301.

    PubMed 

    Google Scholar
     

  • 229.

    Fornelos N, Franzosa EA, Bishai J, Annand JW, Oka A, Lloyd-Price J, et al. Growth effects of N-acylethanolamines on gut bacteria reflect altered bacterial abundances in inflammatory bowel disease. Nat Microbiol. 2020;5:486–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 230.

    Otagiri S, Ohnishi S, Ohara M, Fu Q, Yamamoto K, Yamamoto K, et al. Oleoylethanolamide ameliorates dextran sulfate sodium-induced colitis in rats. Front Pharmacol. 2020;11:1277.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 231.

    Manca C, Shen M, Boubertakh B, Martin C, Flamand N, Silvestri C, et al. Alterations of brain endocannabinoidome signaling in germ-free mice. Biochim Biophys Acta Mol Cell Biol Lipids. 1865;2020:158786.


    Google Scholar
     

  • 232.

    Dione N, Lacroix S, Taschler U, Deschênes T, Abolghasemi A, Leblanc N, et al. Mgll knockout mouse resistance to diet-induced dysmetabolism is associated with altered gut microbiota. Cells. 2020;9:E2705.

    PubMed 

    Google Scholar
     

  • 233.

    Ayoub SM, Piscitelli F, Silvestri C, Limebeer CL, Rock EM, Smoum R, et al. Spontaneous and naloxone-precipitated withdrawal behaviors from chronic opiates are accompanied by changes in N-Oleoylglycine and N-Oleoylalanine levels in the brain and ameliorated by treatment with these mediators. Front Pharmacol. 2021;12:706703.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 234.

    Cristino L, Palomba L, Di Marzo V. New horizons on the role of cannabinoid CB1 receptors in palatable food intake, obesity and related dysmetabolism. Int J Obes Suppl. 2014;4(Suppl 1):S26–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 235.

    Balsevich G, Sticht M, Bowles NP, Singh A, Lee TTY, Li Z, et al. Role for fatty acid amide hydrolase (FAAH) in the leptin-mediated effects on feeding and energy balance. Proc Natl Acad Sci USA. 2018;115:7605–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 236.

    Depommier C, Vitale RM, Iannotti FA, Silvestri C, Flamand N, Druart C, et al. Beneficial effects of Akkermansia muciniphila are not associated with major changes in the circulating endocannabinoidome but linked to higher mono-palmitoyl-glycerol levels as new PPARα agonists. Cells. 2021;10:185.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 237.

    van Trijp M PH, Wilms E, Ríos-Morales M, Masclee AA, Brummer RJ, Witteman BJ, et al. Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: practical and technical aspects to be considered. Am J Clin Nutr. 2021;114:843–61.


    Google Scholar
     

  • 238.

    Kang SS, Jeraldo PR, Kurti A, Miller MEB, Cook MD, Whitlock K, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener. 2014;9:36.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 239.

    Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121:725–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 240.

    Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc Sport Sci Rev. 2019;47:75–85.

    PubMed 

    Google Scholar
     

  • 241.

    Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A. Exercise activates the endocannabinoid system. Neuroreport. 2003;14:2209–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 242.

    Feuerecker M, Hauer D, Toth R, Demetz F, Hölzl J, Thiel M, et al. Effects of exercise stress on the endocannabinoid system in humans under field conditions. Eur J Appl Physiol. 2012;112:2777–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 243.

    Heyman E, Gamelin F-X, Aucouturier J, Di Marzo V. The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: potential implications for the treatment of obesity. Obes Rev. 2012;13:1110–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 244.

    de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, et al. Quality of life and a surveillant endocannabinoid system. Front Neurosci. 2021;15:747229.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 245.

    Forteza F, Giorgini G, Raymond F. Neurobiological processes induced by aerobic exercise through the endocannabinoidome. Cells. 2021;10:938.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 246.

    Haidari F, Aghamohammadi V, Mohammadshahi M, Ahmadi-Angali K, Asghari-Jafarabadi M. Whey protein supplementation reducing fasting levels of anandamide and 2-AG without weight loss in pre-menopausal women with obesity on a weight-loss diet. Trials. 2020;21:657.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 247.

    Vasconcelos QDJS, Bachur TPR, Aragão GF. Whey protein supplementation and its potentially adverse effects on health: a systematic review. Appl Physiol Nutr Metab. 2021;46:27–33.

    PubMed 

    Google Scholar
     

  • 248.

    Ruocco C, Ragni M, Rossi F, Carullo P, Ghini V, Piscitelli F, et al. Manipulation of dietary amino acids prevents and reverses obesity in mice through multiple mechanisms that modulate energy homeostasis. Diabetes. 2020;69:2324–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 249.

    Choi BS-Y, Daniel N, Houde VP, Ouellette A, Marcotte B, Varin TV, et al. Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice. Nat Commun. 2021;12:3377.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 250.

    Ahmed AR, Owens RJ, Stubbs CD, Parker AW, Hitchman R, Yadav RB, et al. Direct imaging of the recruitment and phosphorylation of S6K1 in the mTORC1 pathway in living cells. Sci Rep. 2019;9:3408.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 251.

    Hansen HS, Vana V. Non-endocannabinoid N-acylethanolamines and 2-monoacylglycerols in the intestine. Br J Pharmacol. 2019;176:1443–54.

    CAS 
    PubMed 

    Google Scholar
     

  • 252.

    Nagappan A, Shin J, Jung MH. Role of cannabinoid receptor type 1 in insulin resistance and its biological implications. Int J Mol Sci. 2019;20:E2109.

    PubMed 

    Google Scholar
     

  • 253.

    Zizzari P, He R, Falk S, Bellocchio L, Allard C, Clark S, et al. CB1 and GLP-1 receptors cross talk provides new therapies for obesity. Diabetes. 2021;70:415–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 254.

    Tam J, Liu J, Mukhopadhyay B, Cinar R, Godlewski G, Kunos G. Endocannabinoids in liver disease. Hepatology. 2011;53(1):346–55. https://doi.org/10.1002/hep.24077.

  • 255.

    Jung K-M, Lin L, Piomelli D. The endocannabinoid system in the adipose organ. Rev Endocr Metab Disord. 2021. https://doi.org/10.1007/s11154-020-09623-z.

  • 256.

    Gruden G, Barutta F, Kunos G, Pacher P. Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol. 2016;173(7):1116–27.

  • 257.

    Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun. 2015;6:6495.

    CAS 
    PubMed 

    Google Scholar
     

  • 258.

    Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol. 2011;2:149.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)