• 1.

    Siemionow M, Brzezicki G. Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol. 2009;87:141–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Chen Z, Pradhan S, Liu C, Le L. Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration. Stem Cells. 2012;30:2261–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Liang X, Ding Y, Zhang Y, Tse H, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23:1045–59.

    PubMed 

    Google Scholar
     

  • 4.

    Ying W, Wehling M, Samengo G, Tidball JG. Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle‐derived nitric oxide. Aging Cell. 2015;14.

  • 5.

    Kiguchi N, Kobayashi Y, Saika F, Sakaguchi H, Maeda T, Kishioka S. Peripheral interleukin-4 ameliorates inflammatory macrophage-dependent neuropathic pain. Pain. 2015;156:684.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Lu JY, Cao Q, Zheng D, Yan S, Wang Y. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 2013;84.

  • 7.

    Lu C, Wang B, Zhang P, Han S, Pi W, Kou YH, et al. Combining chitin biological conduits with small autogenous nerves and platelet-rich plasma for the repair of sciatic nerve defects in rats. CNS Neurosci Ther. 2021;27:805–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zhou G, Chang W, Zhou X, Chen Y, Dai F, Anwar A, et al. Nanofibrous nerve conduits with nerve growth factors and bone marrow stromal cells pre-cultured in bioreactors for peripheral nerve regeneration. ACS Appl Mater Interfaces. 2020;12:16168–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Liu C, Yin G, Sun Y, Lin YF, Xie Z, English AW, et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci Ther. 2020;26:189–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev. 2015;82–83:160–7.

    PubMed 

    Google Scholar
     

  • 11.

    Bjorklund G, Anderson T, Stabenfeldt S. Recent advances in stem cell therapies to address neuroinflammation, stem cell survival, and the need for rehabilitative therapies to treat traumatic brain injuries. Int J Mol Sci. 2021;22.

  • 12.

    Zackoinflamma SD, Butler PE, Kalaskar DM. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells. 2015;7:51015.


    Google Scholar
     

  • 13.

    Noone C, Kihm A, English K, O’Dea S, Mahon B. IFN-γ stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro. Stem Cells Dev. 2013;22:3003–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74:2345–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26:212–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Bernardo G, et al. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci. 2010;67:655–69.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Fattore A, Luciano R, Pascucci L, Li W, Tang Y, Wei X, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24:2615–27.

    PubMed 

    Google Scholar
     

  • 18.

    Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflamm. 2011;8:1–14.


    Google Scholar
     

  • 19.

    Mietto BS, Mostacada K, Martinez AM. Neurotrauma and inflammation: CNS and PNS responses. Mediators Inflamm. 2015;2015:251204.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Chen C, Weber J, Holtkamp S, Ince LM, de Juan A, Wang C, et al. Loss of direct adrenergic innervation after peripheral nerve injury causes lymph node expansion through IFN-γ. J Exp Med. 2021;218.

  • 21.

    Maiko O, Masaki H, Nobuhisa N, et al. Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy. J Diabetes Investig. 2016;7:485–96.


    Google Scholar
     

  • 22.

    Pan D, Hunter DA, Schellhardt L, Jo S, Santosa KB, Larson EL, et al. The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration. Exp Neurol. 2019;318:216–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Aggarwal S. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Kim DS, Jang IK, Lee MW, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-γ. EBioMedicine. 2018;28:261–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Domenis R, Cifù A, Quaglia S, Pistis C, Moretti M, Vicario A, et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep. 2018;8:13325.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Fregnan F, Muratori L, Simões A, Giacobini-Rob MG, Raimondo S. Role of inflammatory cytokines in peripheral nerve injury. Neural Regen Res. 2012;7:2259.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Wu R, Chen B, Jia X, Qiu Y, Liu M, Huang C, et al. Interleukin-1β influences functional regeneration following nerve injury in mice through nuclear factor-κB signaling pathway. Immunology. 2019;156:235–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 2002;22:3052.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Nadeau S, Filali M, Zhang J, Kerr B, Rivest S, Soulet D, et al. Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci. 2011;31:12533–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Boivin A, Pineau I, Barrette B, Filali M, Vallières N, Rivest S, et al. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci. 2007;27:12565–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Chen G, Park CK, Xie RG, Ji RR. Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion. J Clin Investig. 2015;125:3226–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Turner M, Feldmann M. Comparison of patterns of expression of tumour necrosis factor, lymphotoxin and interleukin-6 mRNA. Biochem Biophys Res Commun. 1988;153:1144–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Tsarouchas M, Wehner D, Cavone L, Munir T, Keatinge M, Lambertus M, et al. Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat Commun. 2018;9:4670.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Putra A, Ridwan FB, Putridewi AI, Kustiyah AR, Wirastuti K, Sadyah NAC, et al. The role of TNF-α induced MSCs on suppressive inflammation by increasing TGF-β and IL-10. Open Access Maced J Med Sci. 2018;6:1779–83.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Beldi G, Khosravi M, Abdelgawad ME, Salomon BL, Uzan G, Haouas H, et al. TNFα/TNFR2 signaling pathway: an active immune checkpoint for mesenchymal stem cell immunoregulatory function. Stem Cell Res Ther. 2020;11:281.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Beldi G, Bahiraii S, Lezin C, Nouri Barkestani M, Abdelgawad ME, Uzan G, et al. TNFR2 is a crucial hub controlling mesenchymal stem cell biological and functional properties. Front Cell Dev Biol. 2020;8.

  • 37.

    Peng RJ, Jiang B, Ding XP, Huang H, Liao Y, Peng G, et al. Effect of TNF-α inhibition on bone marrow-derived mesenchymal stem cells in neurological function recovery after spinal cord injury via the Wnt signaling pathway in a rat model. Cell Physiol Biochem. 2017;42:743–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Spangler J, Tomala J, Luca V, Jude K, Dong S, Ring A, et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity. 2015;42:815–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Reichert F, Levitzky R, Rotshenker S. Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci. 2010;8:530–5.


    Google Scholar
     

  • 40.

    Ge Y, Zhang Y, Tang Q, Gao J, Yang H. Mechanisms of the immunomodulation effects of bone marrow-derived mesenchymal stem cells on facial nerve injury in sprague-dawley rats. Stem Cells Dev. 2019.

  • 41.

    Eliana B, Gina G, Oscar H, González J, Echeverria V, Ashraf GM, et al. Mitochondrial neuroglobin is necessary for protection induced by conditioned medium from human adipose-derived mesenchymal stem cells in astrocytic cells subjected to scratch and metabolic injury. Mol Neurobiol. 2019;56:5167–87.


    Google Scholar
     

  • 42.

    Erriah M, Pabreja K, Fricker M, Baines KJ, Donnelly LE, Bylund J, Karlsson A, Simpson JL. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res. 2019;20:1. https://doi.org/10.1186/s12931-018-0967-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Kalinski AL, Yoon C, Huffman LD, et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. Elife. 2020;9:e60223.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW, Lopez AF. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood. 2009;114:1289–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol. 2002;26:748–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Day YJ, Liou JT, Lee CM, Lin YC, Mao CC, Chou AH, et al. Lack of interleukin-17 leads to a modulated micro-environment and amelioration of mechanical hypersensitivity after peripheral nerve injury in mice. Pain. 2014;155:1293–302.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopoly-saccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol. 2003;15:2106–12.


    Google Scholar
     

  • 48.

    Kleinschnitz C, Hofstetter H, Meuth G, Braeuninger S, Sommer C, Stoll G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol. 2006;200:480–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med. 2017;21(5):941–54.

    PubMed 

    Google Scholar
     

  • 50.

    Wynn T, Vannella K. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Wang AYL, Loh CYY, Shen HH, Hsieh SY, Wang IK, Lee CM, et al. Human Wharton’s jelly mesenchymal stem cell-mediated sciatic nerve recovery is associated with the upregulation of regulatory T cells. Int J Mol Sci. 2020;21:6310.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 52.

    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Siqueira MB, Kroner A, Girolami EI, Santos-Nogueira E, Zhang J, David S. Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. J Neurosci. 2015;35:16431–42.


    Google Scholar
     

  • 54.

    Ydens E, Cauwels A, Asselbergh B, Goethals S, Peeraer L, Lornet G, et al. Acute injury in the peripheral nervous system triggers an alternative macrophage response. J Neuroinflamm. 2012;9:176.

    CAS 

    Google Scholar
     

  • 55.

    Obermajer N, Popp F, Soeder Y, Haarer J, Geissler E, Schlitt H, et al. Conversion of Th17 into IL-17A(neg) regulatory T cells: a novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell-supported minimized immunosuppressive therapy. J Immunol. 2014;193:4988–99.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Cui Y, Xu N, Xu W, Xu G. Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. Vitro Cell Dev Biol Anim. 2017;53:328–35.

    CAS 

    Google Scholar
     

  • 57.

    Liao CF, Chen CC, Lu YW, Yao CH, Lin JH, Way TD, et al. Effects of endogenous inflammation signals elicited by nerve growth factor, interferon-γ, and interleukin-4 on peripheral nerve regeneration. J Biol Eng. 2019;13:86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Zhang J, Chen H, Duan Z, Chen K, Liu Z, Zhang L, et al. The effects of co-transplantation of olfactory ensheathing cells and schwann cells on local inflammation environment in the contused spinal cord of rats. Mol Neurobiol. 2017;54:943–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Ullah I, Choe YH, Khan M, Bharti D, Shivakumar, SB, Lee HJ, et al. Dental pulp-derived stem cells can counterbalance peripheral nerve injury-induced oxidative stress and supraspinal neuro-infammation in rat brain. Sci Rep. 2018;8.

  • 60.

    Yagura K, et al. The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury. PLoS ONE. 2020;15(3):e0230080.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Mosser D, Edwards J. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Kiguchi N, Kobayashi Y, Saika F, Kishioka S. Epigenetic upregulation of CCL2 and CCL3 via histone modifications in infiltrating macrophages after peripheral nerve injury. Cytokine. 2013;64:666–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Zhang Z, Zhang ZY, Wu Y, Schluesener HJ. Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury. Brain Res. 2012;1461:102–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Peruzzaro S, Andrews M, Al-Gharaibeh A, Pupiec O, Resk M, Story D, et al. Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J Neuroinflamm. 2019;16:2.

    CAS 

    Google Scholar
     

  • 65.

    Zhong Z, Chen A, Fa Z, et al. Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-κB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats. Neurobiol Dis. 2020;143:104945.

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Heo JS, Choi Y, Kim HO. Adipose-derived mesenchymal stem cells promote M2 macrophage phenotype through exosomes. Stem Cells Int. 2019;2019:7921760.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Xu C, Fu F, Li X, Zhang S. Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int J Neurosci. 2017;127:1124–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Chen X, Wei Q, Sun H, Qian H, Zhang X, Shen L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells regulate macrophage polarization to attenuate systemic lupus erythematosus-associated diffuse alveolar hemorrhage in mice. Int J Stem Cells. 2021;14:331–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Ma H, Li YN, Song L, Liu R, Li X, Shang Q, et al. Macrophages inhibit adipogenic differentiation of adipose tissue derived mesenchymal stem/stromal cells by producing pro-inflammatory cytokines. Cell Biosci. 2020;10:88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-κB response in macrophages. BMC Immunol. 2007;8:1.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Marwick JA, Mills R, Kay O, Michail K, Stephen J, Rossi AG, et al. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation. Cell Death Dis. 2018;9:665.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, et al. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155:1282–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Cafferty W, Gardiner N, Das P, Qiu J, McMahon S, Thompson S. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci. 2004;24:4432–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci. 2011;5:79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Pan D, Hunter DA, Schellhardt L, Fuchs A, Halevi AE, Snyder-Warwick AK, et al. T cells modulate IL-4 expression by eosinophil recruitment within decellularized scaffolds to repair nerve defects. Acta Biomater. 2020;112:149–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Chiossone L, Conte R, Spaggiari GM, Serra M, Romei C, Bellora F, et al. Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells. 2016;34:1909–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Yu Y, Valderrama AV, Han Z, Uzan G, Naserian S, Oberlin E. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory and Foxp3+ T Regs induction capacity. Stem Cell Res Ther. 2020;12:138.


    Google Scholar
     

  • 79.

    Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology. 2009;126:220–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Zhang L, Wang XY, Zhou PJ, He Z, Yan HZ, Xu DD, et al. Use of immune modulation by human adipose-derived mesenchymal stem cells to treat experimental arthritis in mice. Am J Transl Res. 2017;9:2595–607.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Jung MK, Kwak JE, Shin EC. IL-17A-producing Foxp3(+) regulatory T cells and human diseases. Immune Netw. 2017;17:276–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13:461–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood. 2006;108:253–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: a cytokine triumvirate in cancer. Front Oncol. 2019;9:969.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a better regeneration through implant-mediated immunomodulation: harnessing the immune responses. Adv Sci. 2021;8:e2100446.


    Google Scholar
     

  • 86.

    Pradier A, Passweg J, Villard J, Kindler V. Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant. 2011;20:681–91.

    PubMed 

    Google Scholar
     

  • 87.

    Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74–85.

    PubMed 

    Google Scholar
     

  • 88.

    Fu Q, Man X, Yu M, Chu Y, Luan X, Piao H, et al. Human decidua mesenchymal stem cells regulate decidual natural killer cell function via interactions between collagen and leukocyte-associated immunoglobulin-like receptor 1. Mol Med Rep. 2017;16:2791–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Fan L, Yu Z, Li J, Dang X, Wang K. Immunoregulation effects of bone marrow-derived mesenchymal stem cells in xenogeneic acellular nerve grafts transplant. Cell Mol Neurobiol. 2014;34(7):999–1010.

    PubMed 

    Google Scholar
     

  • 90.

    Yue L, Yao D, Zhang J, Liu B, Zhang L, Hua F, et al. The effects of epidermal neural crest stem cells on local inflammation microenvironment in the defected sciatic nerve of rats. Front Mol Neurosci. 2017;10:133.


    Google Scholar
     

  • 91.

    Harrell CR, Jankovic MG, Fellabaum C, Volarevic A, Djonov V, Arsenijevic A, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors. Adv Exp Med Biol. 2019;1084:187–206.

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Zhou Y, Day A, Haykal S, Keating A, Waddell TK. Mesenchymal stromal cells augment CD4+ and CD8+ T-cell proliferation through a CCL2 pathway. Cytotherapy. 2013;15:1195–207.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Ma Y, Dong L, Zhou D, Cai J, Zhang X, Liang J, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med. 2019;23:2822–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Sheng Y, Zhou X, Wang J, et al. MSC derived EV loaded with miRNA-22 inhibits the inflammatory response and nerve function recovery after spinal cord injury in rats. J Cell Mol Med. 2021;25(21):10268–78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Xu K, Ma D, Zhang G, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorate collagen-induced arthritis via immunomodulatory T lymphocytes. Mol Immunol. 2021;135:36–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Zhai X, Chen K, Yang H, Li B, Zhou T, Wang H, et al. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. J Nanobiotechnol. 2021;19:274.


    Google Scholar
     

  • 97.

    Marta G, Estela V, Rafael S, Christian M, Maria C, Pilar S, et al. HIF-1α and pro-inflammatory signaling improves the immunomodulatory activity of MSC-derived extracellular vesicles. Int J Mol Sci. 2021;22:3416.


    Google Scholar
     

  • 98.

    Martinez VG, Ontoria-Oviedo I, Ricardo CP, Harding SE, Sacedon R, Varas A, et al. Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells. Stem Cell Res Ther. 2017;8:208.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8:1399–410.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Tian J, Zhu Q, Zhang Y, Bian Q, Hong Y, Shen Z, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis modulating Th1/Th17 and treg cell responses. Front Immunol. 2020;11:598322.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Duan L, Huang H, Zhao X, Zhou M, Chen S, Wang C, et al. Extracellular vesicles derived from human placental mesenchymal stem cells alleviate experimental colitis in mice by inhibiting inflammation and oxidative stress. Int J Mol Med. 2020;46:1551–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Fang J, Zhang S, Liu Z, Pan Y, Cao L, Hou P, et al. Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2. Stem Cells Transl Med. 2020;9:773–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Xin L, Lin X, Zhou F, Li C, Wang X, Yu H, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater. 2020;113:252–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Witte SFH, Merino AM, Franquesa M, Strini T, van Zoggel JAA, et al. Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease. Stem Cell Res Ther. 2017;8:140.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Lv H, Yuan X, Zhang J, Lu T, Yao J, Zheng J, et al. Heat shock preconditioning mesenchymal stem cells attenuate acute lung injury via reducing NLRP3 inflammasome activation in macrophages. Stem Cell Res Ther. 2021;12:290.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Vigo T, Rocca C, Faicchia D, Procaccini C, Ruggieri M, Salvetti M, et al. IFNβ enhances mesenchymal stromal (Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism. Cell Death Dis. 2019;10:85.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Ahmadvand S, Absalan A, Azadi D. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles attenuate experimental autoimmune encephalomyelitis via regulating pro and anti-inflammatory cytokines. Sci Rep. 2021;11:11658.


    Google Scholar
     

  • 108.

    Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794–809.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019;2019:7132708.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Helena H, Cardoso RS, Zonari A, Correia J, Leal EC, Jiménez-Balsa A, et al. The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration. ACS Nano. 2019;13:8694–707.


    Google Scholar
     

  • 111.

    Teixeira GQ, Pereira CL, Ferreira JR, Maia AF, Gomez-Lazaro M, Barbosa MA, et al. Immunomodulation of human mesenchymal stem/stromal cells in intervertebral disc degeneration: insights from a proinflammatory/degenerative ex vivo model. Spine. 2018;43:1673–82.


    Google Scholar
     

  • 112.

    Shen B, Liu J, Zhang F, Wang Y, Qin Y, Zhou Z, et al. CCR2 Positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury. Stem Cells Int. 2016;2016:1240301.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 113.

    Wang B, Jia H, Zhang B, Wang J, Ji C, Zhu X, et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res Ther. 2017;8:75.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Lai P, Chen X, Guo L, Wang Y, Liu X, Liu Y, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol. 2018;11:135.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Li KL, Li JY, Xie GL, Ma XY. Exosomes released from human bone marrow-derived mesenchymal stem cell attenuate acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation in mice. Front Cell Dev Biol. 2021;9:617589.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    He J, Li B, Zhou L, Shen B, Zhao H, Peng K, et al. Indoleamine 2,3-dioxgenase-transfected mesenchymal stem cells suppress heart allograft rejection by increasing the production and activity of dendritic cells and regulatory T cells. J Investig Med. 2020;68:728–37.

    PubMed 

    Google Scholar
     

  • 117.

    Ma D, Xu K, Zhang G, Liu Y, Gao J, Tian M, et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int Immunopharmacol. 2019;74:105687.

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Yang Z, Zheng C, Zhang F, Lin B, Cao M, Tian X, et al. Magnetic resonance imaging of enhanced nerve repair with mesenchymal stem cells combined with microenvironment immunomodulation in neurotmesis. Muscle Nerve. 2020;61:815–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Schäfer S, Berger JV, Deumens R, Goursaud S, Hanisch UK, Hermans E. Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflammation. 2014;11:157.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Mert T, Kurt A, Altun İ, Celik A, Baran F, Gunay I. Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model. Bioelectromagnetics. 2017;38:255–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Omi M, Hata M, Nakamura N, Miyabe M, Kobayashi Y, Kamiya H, et al. Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy. J Diabetes Investig. 2016;7:485–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Shiue S, Rau R, Shiue H, Hung YW, Li ZX, Yang KD, et al. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain. 2019;160:210–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Tsuruta T, Sakai K, Watanabe J, Katagiri W, Hibi H. Dental pulp-derived stem cell conditioned medium to regenerate peripheral nerves in a novel animal model of dysphagia. PLoS ONE. 2018;13:e0208938.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Zhang R, Liu Y, Yan K, Yin D, Li F, Wu Y, et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation. 2013;10:106.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 125.

    Chen X, Wei Q, Sun H, Talebi M, Mehdizadeh A, Yousefi M. Exosomes derived from human umbilical cord mesenchymal stem cells regulate macrophage polarization to attenuate systemic lupus erythematosus-associated diffuse alveolar hemorrhage in mice. Int J Stem Cells. 2021;14:331–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Luo Z, Lin J, Sun Y, Wang C, Chen J. Bone marrow stromal cell-derived exosomes promote muscle healing following contusion through macrophage polarization. Stem Cells Dev. 2021;30:135–48.

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Bao CS, Li XL, Liu L, Wang B, Yang FB, Chen LG. Transplantation of Human umbilical cord mesenchymal stem cells promotes functional recovery after spinal cord injury by blocking the expression of IL-7. Eur Rev Med Pharmacol Sci. 2018;22:6436–47.

    PubMed 

    Google Scholar
     

  • 128.

    Tang Z, Gao J, Wu J, Chen CY, Rao SS, Yin H, et al. Human umbilical cord mesenchymal stromal cells attenuate pulmonary fibrosis via regulatory T cell through interaction with macrophage. Stem Cell Res Ther. 2021;12:397.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Naserian S, Shamdani S, Arouche N, Uzan G. Regulatory T cell induction by mesenchymal stem cells depends on the expression of TNFR2 by T cells. Stem Cell Res Ther. 2020;11:534.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Schilling BK, Schusterman MA, Kim DY, Repko AJ, Klett KC, Christ GJ, et al. Adipose〥erived stem cells delay muscle atrophy after peripheral nerve injury in the rodent model. Muscle Nerve. 2019.

  • 131.

    Saeidi M, Masoud A, Shakiba Y, Hadjati J, Bonab MM, Nicknam MH, et al. Immunomodulatory effects of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Iranian J Allergy Asthma Immunol. 2013;12:37–49.


    Google Scholar
     

  • 132.

    Jiang L, Jones S, Jia X. Stem cell transplantation for peripheral nerve regeneration: current options and opportunities. Int J Mol Sci. 2017

  • 133.

    Kubiak C, Grochmal J, Kung T, Cederna P, Midha R, Kemp S, et al. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve. 2020;61:449–59.

    PubMed 

    Google Scholar
     

  • 134.

    Liaudanskaya V, Jgamadze D, Berk A, Bischoff D, Gu B, Hawks-Mayer H, et al. Engineering advanced neural tissue constructs to mitigate acute cerebral inflammation after brain transplantation in rats. Biomaterials. 2019;192:510–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)