• Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6:12–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Asghar W, El Assal R, Shafiee H, Anchan RM, Demirci U. Preserving human cells for regenerative, reproductive, and transfusion medicine. Biotechnol J. 2014;9:895–903.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fujisawa R, Mizuno M, Katano H, Otabe K, Ozeki N, Tsuji K, et al. Cryopreservation in 95% serum with 5% DMSO maintains colony formation and chondrogenic abilities in human synovial mesenchymal stem cells. BMC Musculoskelet Disord. 2019;20:1–9.

    CAS 
    Article 

    Google Scholar
     

  • Horiuchi K, Ozeki N, Endo K, Mizuno M, Katano H, Akiyama M, et al. Thawed cryopreserved synovial mesenchymal stem cells show comparable effects to cultured cells in the inhibition of osteoarthritis progression in rats. Sci Rep. 2021;11:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Sultani AB, Marquez-Curtis LA, Elliott JAW, McGann LE. Improved cryopreservation of human umbilical vein endothelial cells: a systematic approach. Sci Rep. 2016;6:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takebe T, Kobayashi S, Suzuki H, Mizuno M, Chang Y-M, Yoshizawa E, et al. Transient vascularization of transplanted human adult–derived progenitors promotes self-organizing cartilage. J Clin Investig. 2014;124:4325–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, et al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med. 2020;15:1463–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71:181–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muldrew K, McGann LE. Mechanisms of intracellular ice formation. Biophys J. 1990;57:525–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fowler A. Cryo-Injury and biopreservation. Ann N Y Acad Sci. 2005;1066:119–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao D, Critser JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41:187–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2013;28:1317–30.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Best BP. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 2015;18:422–36.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buch SJ, Yuan C, Gao J, Guo J, Bai L, Marshall C, et al. Dimethyl Sulfoxide Damages Mitochondrial Integrity and Membrane Potential in Cultured Astrocytes. PLoS ONE. 2014;9:e107447.

    Article 
    CAS 

    Google Scholar
     

  • Ock S-A, Rho G-J. Effect of dimethyl sulfoxide (DMSO) on cryopreservation of porcine mesenchymal stem cells (pMSCs). Cell Transpl. 2011;20:1231–9.

    Article 

    Google Scholar
     

  • Sumida K, Igarashi Y, Toritsuka N, Matsushita T, Abe-Tomizawa K, Aoki M, et al. Effects of DMSO on gene expression in human and rat hepatocytes. Hum Exp Toxicol. 2011;30:1701–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matsuzaki T, Matsumoto S, Kasai T, Yoshizawa E, Okamoto S, Yoshikawa HY, et al. Defining lineage-specific membrane fluidity signatures that regulate adhesion kinetics. Stem Cell Rep. 2018;11:852–60.

    CAS 
    Article 

    Google Scholar
     

  • Schaeffer BE, Curtis AS. Effects on cell adhesion and membrane fluidity of changes in plasmalemmal lipids in mouse L929 cells. J Cell Sci. 1977;26:47–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edmond V, Dufour F, Poiroux G, Shoji K, Malleter M, Fouqué A, et al. Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility. Oncogene. 2014;34:996–1005.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Silberman S, McGarvey TW, Comrie E, Persky B. The influence of ethanol on cell membrane fluidity, migration, and invasion of murine melanoma cells. Exp Cell Res. 1990;189:64–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Giraud MN. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum Reprod. 2000;15:2160–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peris-Frau P, Soler AJ, Iniesta-Cuerda M, Martín-Maestro A, Sánchez-Ajofrín I, Medina-Chávez DA, et al. Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int J Mol Sci. 2020;21:2781.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mizuno M, Katano H, Shimozaki Y, Sanami S, Ozeki N, Koga H, et al. Time-lapse image analysis for whole colony growth curves and daily distribution of the cell number per colony during the expansion of mesenchymal stem cells. Sci Rep. 2019;9:1–9.


    Google Scholar
     

  • Mizuno M, Endo K, Katano H, Amano N, Nomura M, Hasegawa Y, et al. Transplantation of human autologous synovial mesenchymal stem cells with trisomy 7 into the knee joint and 5 years of follow-up. Stem Cells Transl Med. 2021;10:1530–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.

    Article 
    CAS 

    Google Scholar
     

  • Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991;60:179–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaus K, Gratton E, Kable EPW, Jones AS, Gelissen I, Kritharides L, et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci. 2003;100:15554–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K. Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc. 2011;7:24–35.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol Cell Physiol. 1984;247:C125–42.

    CAS 
    Article 

    Google Scholar
     

  • Moshelion M, Moran N, Chaumont F. Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol. 2004;135:2301–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boss D, Kühn J, Jourdain P, Depeursinge C, Magistretti PJ, Marquet P. Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy. J Biomed Opt. 2013;18:036007.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shanfield S, Campbell P, Baumgarten M, Bloebaum R, Sarmiento A. Synovial fluid osmolality in osteoarthritis and rheumatoid arthritis. Clin Orthop Relat Res. 1988;235:289–95.


    Google Scholar
     

  • Baumgarten M, Bloebaum RD, Ross SD, Campbell P, Sarmiento A. Normal human synovial fluid: osmolality and exercise-induced changes. J Bone Joint Surg. 1985;67:1336–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takata K. Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem. 2004;39:1–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ibáñez F, Montesinos J, Area-Gomez E, Guerri C, Pascual M. Ethanol induces extracellular vesicle secretion by altering lipid metabolism through the mitochondria-associated ER membranes and Sphingomyelinases. Int J Mol Sci. 2021;22:8438.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ibáñez F, Montesinos J, Ureña-Peralta JR, Guerri C, Pascual M. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J Neuroinflamm. 2019;16:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, et al. Extracellular vesicles in neurodegenerative disease—pathogenesis to biomarkers. Nat Rev Neurol. 2016;12:346–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sergent O, Pereira M, Belhomme C, Chevanne M, Huc L, Lagadic-Gossmann D. Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J Pharmacol Exp Ther. 2005;313:104–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colombo G, de Ménorval M-A, Mir LM, Fernández ML, Reigada R. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: a comparative study of experiments in silico and with cells. PLOS ONE. 2012;7:41733.

    Article 

    Google Scholar
     

  • Raju R, Torrent-Burgués J, Bryant G. Interactions of cryoprotective agents with phospholipid membranes: a Langmuir monolayer study. Chem Phys Lipids. 2020;231:e104949.

    Article 
    CAS 

    Google Scholar
     

  • Hughes ZE, Mark AE, Mancera RL. Molecular dynamics simulations of the interactions of DMSO with DPPC and DOPC phospholipid membranes. J Phys Chem B. 2012;116:11911–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gironi B, Kahveci Z, McGill B, Lechner B-D, Pagliara S, Metz J, et al. Effect of DMSO on the mechanical and structural properties of model and biological membranes. Biophys J. 2020;119:274–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B. 2007;111:10453–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Notman R, Noro M, O’Malley B, Anwar J. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc. 2006;128:13982–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guillou H, Rodriguez-Cuenca S, Whyte L, Hagen R, Vidal-Puig A, Fuller M. Stearoyl-CoA desaturase 1 is a key determinant of membrane lipid composition in 3T3-L1 adipocytes. PLOS ONE. 2016;11:0162047.


    Google Scholar
     

  • Jain P, Nattakom M, Holowka D, Wang DH, Thomas Brenna J, Ku AT, et al. Runx1 role in epithelial and cancer cell proliferation implicates lipid metabolism and Scd1 and Soat1 activity. Stem Cells. 2018;36:1603–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jeong S-G, Cho G-W. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem Biophys Res Commun. 2015;460:971–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Toussaint O, Royer V, Salmon M, Remacle J. Stress-induced premature senescence and tissue ageing. Biochem Pharmacol. 2002;64:1007–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19:1885–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vono R, Jover Garcia E, Spinetti G, Madeddu P. Oxidative stress in mesenchymal stem cell senescence: regulation by coding and noncoding RNAs. Antioxid Redox Signal. 2018;29:864–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Röck K, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal. 2017;26:563–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Limaye LS. Bone marrow cryopreservation: improved recovery due to bioantioxidant additives in the freezing solution. Stem Cells. 1997;15:353–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sasnoor LM, Kale VP, Limaye LS. Prevention of apoptosis as a possible mechanism behind improved cryoprotection of hematopoietic cells by catalase and trehalose. Transplantation. 2005;80:1251–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seo JM, Sohn MY, Suh JS, Atala A, Yoo JJ, Shon Y-H. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology. 2011;62:167–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dannenmann B, Lehle S, Hildebrand Dominic G, Kübler A, Grondona P, Schmid V, et al. High glutathione and glutathione peroxidase-2 levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells. Stem Cell Rep. 2015;4:886–98.

    CAS 
    Article 

    Google Scholar
     

  • Ntambi JM, Miyazaki M. Recent insights into stearoyl-CoA desaturase-1. Curr Opin Lipidol. 2003;14:255–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Acker JP, Elliott JAW, McGann LE. Intercellular ice propagation: experimental evidence for ice growth through membrane pores. Biophys J. 2001;81:1389–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chinnadurai R, Garcia Marco A, Sakurai Y, Lam Wilbur A, Kirk Allan D, Galipeau J, et al. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Rep. 2014;3:60–72.

    CAS 
    Article 

    Google Scholar
     

  • Guilak F, Erickson GR, Ting-Beall HP. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys J. 2002;82:720–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ragoonanan V, Hubel A, Aksan A. Response of the cell membrane–cytoskeleton complex to osmotic and freeze/thaw stresses. Cryobiology. 2010;61:335–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ragoonanan V, Less R, Aksan A. Response of the cell membrane–cytoskeleton complex to osmotic and freeze/thaw stresses. Part 2: The link between the state of the membrane–cytoskeleton complex and the cellular damage. Cryobiology. 2013;66:96–104.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen L. Tea catechins protect against lead-induced cytotoxicity, lipid peroxidation, and membrane fluidity in HepG2 cells. Toxicol Sci. 2002;69:149–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang D, Wang Y, Xu S, Wang F, Wang B, Han K, et al. Epigallocatechin-3-gallate Protects against hydrogen peroxide-induced inhibition of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Stem Cells Int. 2016;2016:1–10.


    Google Scholar
     

  • Matsuzaki T, Ito H, Chevyreva V, Makky A, Kaufmann S, Okano K, et al. Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Phys Chem Chem Phys. 2017;19:19937–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsuchiya H. Effects of green tea catechins on membrane fluidity. Pharmacology. 1999;59:34–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han D-W, Kim HH, Lee MH, Baek HS, Lee K-Y, Hyon S-H, et al. Protection of osteoblastic cells from freeze/thaw cycle-induced oxidative stress by green tea polyphenol. Biotech Lett. 2005;27:655–60.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)