• Zeman W, Dyken P. Neuronal ceroid-lipofuscinosis (Batten’s disease): relationship to amaurotic family idiocy? Pediatrics. 1969;44(4):570–83.

    CAS 
    Article 

    Google Scholar
     

  • Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics. 2005;6(3):107–26.

    Article 

    Google Scholar
     

  • Goebel HH. The neuronal ceroid-lipofuscinoses. J Child Neurol. 1995;10(6):424–37.

    CAS 
    Article 

    Google Scholar
     

  • Haltia M. The neuronal ceroid-lipofuscinoses: from past to present. Biochem Biophys Acta. 2006;1762(10):850–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Williams RE, Mole SE. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology. 2012;79(2):183–91.

    Article 

    Google Scholar
     

  • Uvebrant P, Hagberg B. Neuronal ceroid lipofuscinoses in Scandinavia. Epidemiology and clinical pictures. Neuropediatrics. 1997;28(1):6–8.

    CAS 
    Article 

    Google Scholar
     

  • Moore SJ, Buckley DJ, MacMillan A, Marshall HD, Steele L, Ray PN, et al. The clinical and genetic epidemiology of neuronal ceroid lipofuscinosis in Newfoundland. Clin Genet. 2008;74(3):213–22.

    CAS 
    Article 

    Google Scholar
     

  • Santorelli FM, Garavaglia B, Cardona F, Nardocci N, Bernardina BD, Sartori S, et al. Molecular epidemiology of childhood neuronal ceroid-lipofuscinosis in Italy. Orphanet J Rare Dis. 2013;8:19.

    Article 

    Google Scholar
     

  • Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. Biochim Biophys Acta. 2009;1793(4):697–709.

    CAS 
    Article 

    Google Scholar
     

  • Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852(10 Pt B):2237–41.

    CAS 
    Article 

    Google Scholar
     

  • Brudvig JJ, Weimer JM. On the cusp of cures: breakthroughs in Batten disease research. Curr Opin Neurobiol. 2021;72:48–54.

    Article 

    Google Scholar
     

  • Beck-Wodl S, Harzer K, Sturm M, Buchert R, Riess O, Mennel HD, et al. Homozygous TBC1 domain-containing kinase (TBCK) mutation causes a novel lysosomal storage disease—a new type of neuronal ceroid lipofuscinosis (CLN15)? Acta Neuropathol Commun. 2018;6(1):145.

    Article 

    Google Scholar
     

  • Noskova L, Stranecky V, Hartmannova H, Pristoupilova A, Baresova V, Ivanek R, et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet. 2011;89(2):241–52.

    CAS 
    Article 

    Google Scholar
     

  • Rechtzigel MJ, Meyerink BL, Leppert H, Johnson TB, Cain JT, Ferrandino G, et al. Transmembrane Batten disease proteins interact with a shared network of vesicle sorting proteins to regulate synaptic composition and function. 2021:2021.09.16.460691.

  • Benedict JW, Getty AL, Wishart TM, Gillingwater TH, Pearce DA. Protein product of CLN6 gene responsible for variant late-onset infantile neuronal ceroid lipofuscinosis interacts with CRMP-2. J Neurosci Res. 2009;87(9):2157–66.

    CAS 
    Article 

    Google Scholar
     

  • Koh S, Cain J, Magee H, White K, Rechtzigel M, Meyerink B, et al. A CLN6-CRMP2-KLC4 complex regulates anterograde ER-derived vesicle trafficking in cortical neurites. 2021:2021.09.16.460653.

  • Arsov T, Smith KR, Damiano J, Franceschetti S, Canafoglia L, Bromhead CJ, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011;88(5):566–73.

    CAS 
    Article 

    Google Scholar
     

  • Tyynela J, Suopanki J, Santavuori P, Baumann M, Haltia M. Variant late infantile neuronal ceroid-lipofuscinosis: pathology and biochemistry. J Neuropathol Exp Neurol. 1997;56(4):369–75.

    CAS 
    Article 

    Google Scholar
     

  • Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol. 2019;15(3):161–78.

    Article 

    Google Scholar
     

  • Cain JT, Likhite S, White KA, Timm DJ, Davis SS, Johnson TB, et al. Gene Therapy corrects brain and behavioral pathologies in CLN6-batten disease. Mol Ther J Am Soc Gene Ther. 2019;27(10):1836–47.

    CAS 
    Article 

    Google Scholar
     

  • de los Reyes E, Aylward S, Meyer K, Lehwald L, Albright C, Rogers DL, et al. Single-dose AAV9-CLN6 gene transfer slows the decline in motor and language function in variant late infantile neuronal ceroid lipofuscinosis 6: Interim results from phase 1/2 trial. Mol Genet Metab. 2021;132(2):S32–3.

    Article 

    Google Scholar
     

  • Chin JJ, Behnam B, Davids M, Sharma P, Zein WM, Wang C, et al. Novel mutations in CLN6 cause late-infantile neuronal ceroid lipofuscinosis without visual impairment in two unrelated patients. Mol Genet Metab. 2019;126(2):188–95.

    CAS 
    Article 

    Google Scholar
     

  • Trujillano D, Oprea GE, Schmitz Y, Bertoli-Avella AM, Abou Jamra R, Rolfs A. A comprehensive global genotype-phenotype database for rare diseases. Mol Genet Genom Med. 2017;5(1):66–75.

    Article 

    Google Scholar
     

  • Mink JW, Augustine EF, Adams HR, Marshall FJ, Kwon JM. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.

    Article 

    Google Scholar
     

  • Team RC. R: A Language and Environment for Statistical Computing. 2021.

  • Sharp JD, Wheeler RB, Parker KA, Gardiner RM, Williams RE, Mole SE. Spectrum of CLN6 mutations in variant late infantile neuronal ceroid lipofuscinosis. Hum Mutat. 2003;22(1):35–42.

    CAS 
    Article 

    Google Scholar
     

  • Al-Muhaizea MA, Al-Hassnan ZN, Chedrawi A. Variant late infantile neuronal ceroid lipofuscinosis (CLN6 gene) in Saudi Arabia. Pediatr Neurol. 2009;41(1):74–6.

    Article 

    Google Scholar
     

  • Nafi O, Ramadan B, Riess O, Buchert R, Froukh T. Two cases of variant late infantile ceroid lipofuscinosis in Jordan. World J Clin Cases. 2019;7(2):203–8.

    Article 

    Google Scholar
     

  • Gao H, Boustany RM, Espinola JA, Cotman SL, Srinidhi L, Antonellis KA, et al. Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet. 2002;70(2):324–35.

    CAS 
    Article 

    Google Scholar
     

  • Wheeler RB, Sharp JD, Schultz RA, Joslin JM, Williams RE, Mole SE. The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am J Hum Genet. 2002;70(2):537–42.

    CAS 
    Article 

    Google Scholar
     

  • Mizuguchi T, Suzuki T, Abe C, Umemura A, Tokunaga K, Kawai Y, et al. A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing. J Hum Genet. 2019;64(5):359–68.

    CAS 
    Article 

    Google Scholar
     

  • Bertoli-Avella AM, Kandaswamy KK, Khan S, Ordonez-Herrera N, Tripolszki K, Beetz C, et al. Combining exome/genome sequencing with data repository analysis reveals novel gene–disease associations for a wide range of genetic disorders. Genet Med. 2021;23(8):1551–68.

    CAS 
    Article 

    Google Scholar
     

  • South ST, Lee C, Lamb AN, Higgins AW, Kearney HM, Working Group for the American College of Medical G, et al. ACMG standards and guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision-2013. Genet Med. 2013;15(11):901–9.

    CAS 
    Article 

    Google Scholar
     

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet. 2015;17(5):405–24.


    Google Scholar
     

  • Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med Off J Am Coll Med Genet. 2017;19(2):249–55.


    Google Scholar
     

  • Kohler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine JP, et al. Expansion of the human phenotype ontology (HPO) knowledge base and resources. Nucleic Acids Res. 2019;47(D1):D1018–27.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)

    By admin