• Ai C, Liang G, Sun J, Wang X, Zhou W (2012) Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 173–174:330–338

    Article 
    CAS 

    Google Scholar
     

  • Bastida F, Kandeler E, Hernández T, García C (2007) Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb Ecol 55:651–661

    Article 

    Google Scholar
     

  • Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomassC. Soil Biol Biochem 29:1023–1032

    CAS 
    Article 

    Google Scholar
     

  • Brookes PC, Landrnan A, Pruden G et al (1985) Chloroformfumigation and the release of soil nitrogen: a rapiddirect extraction method to measure microbial biomassnitrogen in soil. Soil Biol Biochem 17:837–842

    CAS 
    Article 

    Google Scholar
     

  • Cornell SE (2011) Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component. Environ Pollut 159:2214–2222

    CAS 
    Article 

    Google Scholar
     

  • Cusack DF (2013) Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient. Soil Biol Biochem 57:192–203

    CAS 
    Article 

    Google Scholar
     

  • Dong L, Sun T, Berg B, Zhang L, Zhang Q, Wang Z (2019) Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a temperate grassland. Soil Biol Biochem 134:78–80

    CAS 
    Article 

    Google Scholar
     

  • Dong L, Berg B, Sun T, Wang Z, Han X (2020) Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biol Biochem 147:107845. https://doi.org/10.1016/j.soilbio.2020.107845

    CAS 
    Article 

    Google Scholar
     

  • Du YH, Guo P, Liu JQ, Wang CY, Yang N, Jiao ZX (2014) Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob Change Biol 20(10):3222–3228

    Article 

    Google Scholar
     

  • Elfstrand S, Hedlund K, Martensson A (2007) Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl Soil Ecol 35:610–621

    Article 

    Google Scholar
     

  • Enowashu E, Poll C, Lamersdorf N, Kandeler E (2009) Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil. Appl Soil Ecol 43:11–21

    Article 

    Google Scholar
     

  • Fenn ME, Bytnerowicz A, Schilling SL, Vallano DM, Zavaleta ES, Weiss SB, Morozumi C, Geiser LH, Hanks K (2018) On-road emissions of ammonia: an underappreciated source of atmospheric nitrogen deposition. Sci Total Environ 625:909–919

    CAS 
    Article 

    Google Scholar
     

  • Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48:218–229

    CAS 
    Article 

    Google Scholar
     

  • Guo P, Wang CY, Jia Y, Wang Q, Han GM, Tian XJ (2011) Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant Soil 338:355–366

    CAS 
    Article 

    Google Scholar
     

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30(6):357–363

    Article 

    Google Scholar
     

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82:389–405

    Article 

    Google Scholar
     

  • Jiang J, Wang YP, Yu MX (2018) Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chem Geol 501:86–94

    CAS 
    Article 

    Google Scholar
     

  • Jing X, Chen X, Fang J, Ji C, Shen H, Zheng C, Zhu B (2020) Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol Biochem 141:107657. https://doi.org/10.1016/j.soilbio.2019.107657

    CAS 
    Article 

    Google Scholar
     

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15

    CAS 
    Article 

    Google Scholar
     

  • Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F (2008) Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol Biochem 40(3):638–648

    CAS 
    Article 

    Google Scholar
     

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    CAS 
    Article 

    Google Scholar
     

  • Kirk GJD, Bellamy PH, Lark R (2010) Changes in soil pH across England and Wales in response to decreased acid deposition. Glob Change Biol 16:3111–3119


    Google Scholar
     

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article 

    Google Scholar
     

  • Krusche AV, De Camargo PB, Cerri CE, Ballester MV, Lara LBLS, Victoria RL, Martinelli LA (2003) Acid rain and nitrogen deposition in a subtropical watershed (Piracicaba): ecosystem consequences. Environ Pollut 121:389–399

    CAS 
    Article 

    Google Scholar
     

  • Li X, Shi H, Xu W, Liu W, Wang X, Hou L et al (2015) Seasonal and spatial variations of bulk nitrogen deposition and the impacts on the carbon cycle in the arid/semiarid grassland of Inner Mongolia, China. PLoS ONE 10(12):e0144689

    Article 
    CAS 

    Google Scholar
     

  • Liu XJ, Zhang Y, Han WX, Tang A, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    CAS 
    Article 

    Google Scholar
     

  • Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299

    CAS 
    Article 

    Google Scholar
     

  • Luo Q, Gong J, Yang L et al (2017) Impacts of nitrogen addition on the carbon balance in a temperate semiarid grassland ecosystem. Biol Fertil Soils 53:911–927

    CAS 
    Article 

    Google Scholar
     

  • Mason-Jonesa K, Schmückera N, Yakov K (2018) Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol Biochem 124:38–46

    Article 
    CAS 

    Google Scholar
     

  • McErlean C, Marchant R, Banat IM (2006) An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie Van Leeuwenhoek 90:147–158

    CAS 
    Article 

    Google Scholar
     

  • Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57:99–136

    Article 

    Google Scholar
     

  • Olsen S, Sommers L (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. SSSA, Madison


    Google Scholar
     

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego, p 340


    Google Scholar
     

  • Peierls BL, Paerl HW (1997) Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnol Oceanogr 42:1819–1823

    CAS 
    Article 

    Google Scholar
     

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    CAS 
    Article 

    Google Scholar
     

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    CAS 
    Article 

    Google Scholar
     

  • Stursova M, Crenshaw CL, Sinsabaugh RL (2006) Microbial responses to long-term N deposition in a semiarid grassland. Microb Ecol 51:90–98

    Article 

    Google Scholar
     

  • Sun T, Dong L, Wang Z, Lü X, Mao Z (2016) Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol Biochem 93:50–59

    CAS 
    Article 

    Google Scholar
     

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article 

    Google Scholar
     

  • Van Groenigen JW et al (2017) Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol 51:11503–11504

    Article 
    CAS 

    Google Scholar
     

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    CAS 

    Google Scholar
     

  • Wang C, Han G, Jia Y, Feng X, Guo P, Tian X (2011) Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest. Ecol Res 26:505–513

    CAS 
    Article 

    Google Scholar
     

  • Wang X, Yao B, Su X (2018) Linking enzymatic oxidative degradation of lignin to organics detoxification. Int J Mol Sci 19:3373

    Article 
    CAS 

    Google Scholar
     

  • Yang S, Xu ZW, Wang RZ et al (2017) Variations in soil microbial community composition and enzymatic activities in response to increased N deposition and precipitation in Inner Mongolian grassland. Appl Soil Ecol 119:275–285

    Article 

    Google Scholar
     

  • Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359

    Article 

    Google Scholar
     

  • Zhang Y, Song L, Liu XJ et al (2012) Atmospheric organic nitrogen deposition in China. Atmos Environ 46:195–204

    Article 
    CAS 

    Google Scholar
     

  • Zhang TA, Chen HYH, Ruan HH (2018) Global negative effects of nitrogen deposition on soil microbes. ISME J 12:1817–1825

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)