• Ahrens TJ (1987) Shock-wave techniques for geophysics and planetary physics. In: Sammis CG, Henyey TL (eds) Methods of experimental physics. Academic Press, New York, pp 185–235


    Google Scholar
     

  • Amsden A, Ruppel H, Hirt C(1980) Sale: a simplified ale computer program for fluid flows at all speeds. Technical report LA-8095 Report, Los Alamos National Laboratories

  • Bischoff A, Stöffler D (1992) Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites. Eur J Mineral 4:707–755

    Article 

    Google Scholar
     

  • Buchwald VF (1975) Secondary structure of iron meteorite, Chapter 11, 125–136, in Handbook of iron meteorites, vol. 1, University of Hawaii

  • Calister WD, Rethwisch DG (2000) Materials science and engineering: an introduction, 8th edn. Wiley, Hoboken


    Google Scholar
     

  • Collins GS, Elbeshausen D, Davison TM, Wünnemann K, Ivanov BA, Melosh HJ (2016) iSALE-Dellen manual. Figshare. https://doi.org/10.6084/m9.figshare.3473690.v2

  • Cottrell AH, Aytekin VJ (1950) The flow of zinc under constant stress. Inst Met 77:389


    Google Scholar
     

  • Davidson AB (1940), The effect of annealing on Neumann bands. Electronic theses and dissertations. Paper 1705. https://doi.org/10.18297/etd/1705

  • Dunlop DJ, Özdemir Ö (2007) Iron and iron-nickel, treatise on geophysics. Treatise Geophys 5:277–336

    Article 

    Google Scholar
     

  • Farla RJM, Kokkonen H, Fitz Gerald JD, Barnhoorn A, Faul UH, Jackson I (2010) Dislocation recovery in fine-grained polycrystalline olivine. Phys Chem Miner. https://doi.org/10.1007/s00269-010-0410-3

    Article 

    Google Scholar
     

  • Glover G, Stellars M (1973) Recovery and recrystallization during high temperature deformation of α-Iron. Metall Trans 4:765–775

    Article 

    Google Scholar
     

  • Goldstein JI, Scott ERD, Chabot NL (2009) Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chem Erde Geochem 69:293–325

    Article 

    Google Scholar
     

  • Hilton CD, Bermingham KR, Walker RJ, Timothy J, McCoy TJ (2019) Genetics, crystallization sequence, and age of the South Byron Trio iron meteorites: new insights to carbonaceous chondrite (CC) type parent bodies. Geochim Cosmochim Acta 25:217–228

    Article 

    Google Scholar
     

  • Humphreys J, Rohrer GS, Rollett A (2017) Recrystallization and related annealing phenomena, 3rd edn. Elsevier, Netherlands, 691p. ISBN978-0-08-098235-9

  • Hwang H, Galtier E, Cynn H, Eom I, Chun SH, Bang Y, Hwang G, Choi J, Kim T, Kong M, Kwon S, Kang K, Lee HJ, Park C, Lee JI, Lee Yongmoon, Yang W, Shim S-H, Vogt T, Kim Sangsoo, Park J, Kim Sunam, Nam D, Lee JH, Hyun H, Kim M, Koo T-Y, Kao C-C, Sekine T, Lee Y (2020) Subnanosecond phase transition dynamics in laser-shocked iron. Sci Adv 6:eaaz5132

  • Ivanov BA, Deniem D, Neukum G (1997) Implementation of dynamic strength models into 2-D hydrocodes: applications for atmospheric breakup and impact cratering. Int J Impact Eng 20:411–430

    Article 

    Google Scholar
     

  • Jain AV, Lipschutz ME (1968) Implications of shock effects in iron meteorites. Nature 220:140–143

    Article 

    Google Scholar
     

  • Kruijer TS, Burkhardt C, Budde G, Kleine T (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc Natl Acad Sci 114(2017):6712–6716

    Article 

    Google Scholar
     

  • Li JCM (1962) Possibility of subgrain rotation during recrystallization. J Appl Phys 33:2958–2965

    Article 

    Google Scholar
     

  • Marchi S, Durda DD, Polanskey CA, Asphaug E, Bottke WF, Elkins‐Tanton LT, et al (2020) Hypervelocity impact experiments in iron‐nickel ingots and iron meteorites: Implications for the NASA Psyche mission. J Geophys Res Planets 125:e2019JE005927. https://doi.org/10.1029/2019JE005927

  • Michalak JT, Paxton HW (1961) Some recovery characteristics of zone melted iron. Trans AIME 221:850–857


    Google Scholar
     

  • Miller GM, Stolper EM, Ahrens TJ (1991) The equation of state of molten komatiite 1. Shock wave compression to 36 GPa. J Geophys Res 96(B7):11831–11848

  • Monaghan BJ, Quested PN (2001) Thermal diffusivity of iron at high temperature in both the liquid and solid states. ISIJ Int 41:1524–1528

    Article 

    Google Scholar
     

  • Murr LE, Trillo EA, Bujanda AA, Martinez NE (2002a) Comparison of residual microstructures associated with impact craters in fcc stainless steel and bcc iron target: the microtwin versus microband issue. Acta Mater 50:121–131

    Article 

    Google Scholar
     

  • Murr LE, Bujanda AA, Trillo EA, Martinez NE (2002b) Deformation twins associated with impact craters in polycrystalline iron target. J Mater Sci Lett 21:559–563

    Article 

    Google Scholar
     

  • Prinz F, Argon AS, Moffatt WC (1982) Recovery of dislocation structures in plastically deformed copper and nickel single crystals. Acta Metall 30:821–830

    Article 

    Google Scholar
     

  • Reisener RJ, Goldstein JI (2003) Ordinary Chondrite metallography: part 1. Fe-Ni taenite cooking experiments. Meteorit Planet Sci 38:1669–1678

    Article 

    Google Scholar
     

  • Rohde RW (1969) Dynamic yield behavior of shock-loaded iron from 76 to 573°K. Acta Metall 17:353–363

    Article 

    Google Scholar
     

  • Scott ERD (2020) Iron meteorites: composition, age, and origin. Oxf Res Encycl Planet Sci. https://doi.org/10.1093/acrefore/9780190647926.013.206

    Article 

    Google Scholar
     

  • Shinohara M (2002) Study of development of a compact two-stage light gas gun and its ignition system. Master of Science thesis, Institute of Fluid Science, Tohoku University

  • Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55:3845–3867

    Article 

    Google Scholar
     

  • Thompson SL, Lauson HS (1972) Improvements in the Chart D radiation-hydrodynamic CODE III: Revised analytic equations of state. Rep. SC-RR-71 0714, pp 1–119, Sandia Natl. Lab., Albuquerque, NM

  • Thompson SL (1990) ANEOS analytic equations of state for shock physics codes input manual. Sandia report, SAND89-2951·UC-404

  • Tomita M, Inaguma T, Sakamoto H, Ushioda K (2017) Recrystallization behavior and texture evolution in severely coldrolled Fe-0.3mass%Si and Fe-0.3mass%Al Alloys. ISIJ Int 57:921–928

    Article 

    Google Scholar
     

  • Uhlig HH (1955) Contribution of metallurgy to the origin of meteorites, part II—the significance of Neumann bands in meteorites. Geochim Cormochim Acta 7:34–42

    Article 

    Google Scholar
     

  • Van Drunen G, Saimoto S (1971) Deformation and recovery of [001] oriented copper crystals. Acta Metall 19:213–221

    Article 

    Google Scholar
     

  • Wasson JT (1967) The chemical classification of iron meteorites. I(Ge and Ga concentration in selected Fe meteorites used to determine quantization in terms of multiple parent body hypothesis and planetary fractionation processes). Geochim Cosmochim Acta 31:161–180

    Article 

    Google Scholar
     

  • Wasson JT, Choi B-G, Jerde EA, Ulff-Møller F (1998) Chemical classification of iron meteorites: XII. New members of the magmatic groups. Geochim Cosmochim Acta 62:715–724

    Article 

    Google Scholar
     

  • Watanabe T, Karashima S (1970) An analysis of high temperature creep in alpha iron based on the super jog mechanism. Trans Jpn Inst Met 11:159–165

    Article 

    Google Scholar
     

  • Wünnemann K, Collins G, Melosh H (2006) A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180:514–527

    Article 

    Google Scholar
     

  • Yang J, Goldstein I, Scott ERD, Michael JR, Kotula PG, Pham T, McCoy TJ (2011) Thermal and impact histories of reheated group IVA, IVB, and ungrouped iron meteorites and their parent asteroids. Meteorit Planet Sci 46:1227–1252. https://doi.org/10.1111/j.1945-5100.2011.01210.x

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)