• Luo W, Nie Q, Zhang X. MicroRNAs involved in skeletal muscle differentiation. J Genet Genomics. 2013;40(3):107–16.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Berkes CA, Tapscott SJ. MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol: 2005: Elsevier. 2005;16:585–95.

    CAS 

    Google Scholar
     

  • Nie M, Deng Z-L, Liu J, Wang D-Z. Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res Int. 2015;2015:676575.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDaneld TG, Smith TP, Doumit ME, Miles JR, Coutinho LL, Sonstegard TS, Matukumalli LK, Nonneman DJ, Wiedmann RT. MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics. 2009;10(1):77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cassar-Malek I, Passelaigue F, Bernard C, Léger J, Hocquette J-F. Target genes of myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics. 2007;8(1):63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ouyang H, Chen X, Li W, Li Z, Nie Q, Zhang X. Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Front Genet. 2018;9:172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Ouyang H, Wang Z, Chen B, Nie Q. A novel circular RNA generated by FGFR2 gene promotes myoblast proliferation and differentiation by sponging miR-133a-5p and miR-29b-1-5p. Cells. 2018;7(11):199.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ouyang H, Chen X, Wang Z, Yu J, Jia X, Li Z, Luo W, Abdalla BA, Jebessa E, Nie Q. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res. 2017;25(1):71–86.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ylihärsilä H, Kajantie E, Osmond C, Forsen T, Barker DJ, Eriksson JG. Birth size, adult body composition and muscle strength in later life. Int J Obes. 2007;31(9):1392–9.

    Article 

    Google Scholar
     

  • Liu J, Lei Q, Li F, Zhou Y, Gao J, Liu W, Han H, Cao D. Dynamic transcriptomic analysis of breast muscle development from the embryonic to post-hatching periods in chickens. Front Genet. 2020;10(1308):1–12.

  • Fridolfsson, A. K., and Ellegren, H. A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol. 1999;30(1):116–21.

  • Liu R, Wang H, Liu J, Wang J, Zheng M, Tan X, Xing S, Cui H, Li Q, Zhao G. Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens. BMC Genomics. 2017;18(1):816–816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.

    Article 

    Google Scholar
     

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8):R72.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X-O, Dong R, Zhang Y, Zhang J-L, Luo Z, Zhang J, Chen L-L, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277–87.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X-O, Wang H-B, Zhang Y, Lu X, Chen L-L, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7(1):191.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

    Article 
    PubMed Central 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Li F, Hu X, Cao D, Liu W, Han H, Zhou Y, Lei Q. Deciphering the miRNA transcriptome of breast muscle from the embryonic to post-hatching periods in chickens. BMC Genomics. 2021;22:64.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong L, Gu T, He Y, Zhou C, Hu Q, Xingwang W, Zheng E, Huang S, Xu Z, Yang J. Genome-wide analysis of circular RNAs mediated ceRNA regulation in porcine embryonic muscle development. Front Cell Dev Biol. 2019;7:289.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, de Cabo R. Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY). 2015;7(11):903.

    CAS 
    Article 

    Google Scholar
     

  • Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899–905.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan S, Zhao W, Song T, Dong Y, Guo J, Cao J, Zhong T, Wang L, Li L, Zhang H. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages. Funct Integr Genomics. 2018;18(1):43–54.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol. 2011;12(6):349.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Duan Y, Li F, Li Y, Tang Y, Kong X, Feng Z, Anthony TG, Watford M, Hou Y, Wu G. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids. 2016;48(1):41–51.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dambal S, Shah M, Mihelich B, Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res. 2015;43(15):7173–88.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen MT, Min K-H, Lee W. MiR-183-5p induced by saturated fatty acids regulates the myogenic differentiation by directly targeting FHL1 in C2C12 myoblasts. BMB Rep. 2020;53(11):605.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Yoon H, Ramírez CM, Lee S-M, Hoe H-S, Fernández-Hernando C, Kim J. MiR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp Neurol. 2012;235(2):476–83.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci. 2007;104(43):17016–21.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Wang Y, Ruan Y, Bai C, Qiu L, Cui Y, Ying G, Li B. PKM2 promotes reductive glutamine metabolism. Cancer Biol Med. 2018;15(4):389.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koopman R, Ly CH, Ryall JG. A metabolic link to skeletal muscle wasting and regeneration. Front Physiol. 2014;5:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Y, Zhang X, Zhang S, Xu S, Chen X, Zhou C, Wang X, Xie X, Lu W. Paclitaxel resistance in ovarian cancers relies on a PGAM1 mediated glycolytic metabolism. 2020.

  • Teltathum T, Mekchay S. Proteome changes in Thai indigenous chicken muscle during growth period. Int J Biol Sci. 2009;5(7):679.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrauwen P, Hesselink M. UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol. 2002;205(15):2275–85.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bezaire V, Spriet L, Campbell S, Sabet N, Gerrits M, Bonen A, Harper ME. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J. 2005;19(8):977–9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kutz LC: Role of ATP1A1 in Skeletal Muscle Growth and Metabolism. 2020.

  • Crawford RR: Regulation and function of the unfolded protein response gene CHAC1. Louisiana State University Health Sciences Center; 2016.

  • Scimone C, Alibrandi S, Donato L, Esposito T, Sidoti A, D’Angelo R. VARIANTS OF THE MOLECULAR CHAPERONE HSPA8 AND HSPA1A GENES IN TRIMETHYLAMINURIA: A PILOT STUDY. 2020.

  • Xu T, Huang W, Zhang X, Ye B, Zhou H, Hou S. Identification and characterization of genes related to the development of breast muscles in Pekin duck. Mol Biol Rep. 2012;39(7):7647–55.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)