• Chen W, Gao YQ, Xie WB, Gong L, Lu K, Wang WS, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet. 2014;46:714–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bernardes-de-Assis J, Storari M, Zala M, Wang W, Jiang D, Shidong L, et al. Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. Phytopathology. 2009;99:1090–9.

    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Liu LM, Wang ZG, Huang SW. Genetic structure and aggressiveness of Rhizoctonia solani AG1-IA, the cause of sheath blight of rice in southern China. J Phytopathol. 2013;161:753–62.

    CAS 
    Article 

    Google Scholar
     

  • Khush GS, Mackill DJ, Sidhu GS. Breeding rice for resistance to bacterial blight. In: Banta SJ, editor. Bacterial blight of rice. Los Banos, Philippines: International Rice Research Institute; 1989. p. 207–17.


    Google Scholar
     

  • Gautam K, Rao PB, Chauhan SVS. Efficacy of some botanicals of the family compositae against Rhizoctonia solani Kuhn. J Mycol Plant Pathol. 2003;33:230–5.


    Google Scholar
     

  • Nino-Liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol. 2010;7(5):303–24.

    Article 

    Google Scholar
     

  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science. 2017;355:962–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu XM, Xu ZY, Ma WX, Haq F, Li Y, Shah SMA, et al. TALE-triggered and iTALE-suppressed Xa1 resistance to bacterial blight is independent of OsTFIIAγ1 or OsTFIIAγ5 in rice. J Exp Bot. 2021. https://doi.org/10.1093/jxb/erab054.

  • Wang AJ, Shu XY, Jing X, Jiao CZ, Che, L, Zhang JF, et al. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome-wide association study. Plant Biotechnol J 2021; doi: https://doi.org/https://doi.org/10.1111/pbi.13569.

  • Shu XY, Wang AJ, Jiang B, Jiang YQ, Xiang X, Yi XQ, et al. Genome-wide association study and transcriptome analysis discover new genes for bacterial leaf blight resistance in rice (Oryza sativa L.). BMC Plant Biol. 2021;21:255.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu G, Yuan M, Ai C, Liu L, Zhuang E, Karapetyan S, et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature. 2017;545:491–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet. 2018;19:21–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135–62.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ji CH, Ji ZY, Liu B, Cheng H, Liu H, Liu SZ, et al. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Communications. 2020;1(4):100087.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Gardner THJ, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995;270:1804–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deng HQ, Liu HB, Li XH, Xiao JH, Wang SP. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol. 2012;158(2):876–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell. 2007;19(6):2064–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu CT, Schläppi MR, Mao BG, Wang W, Wang AJ, Chu CC. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol J. 2019;17(9):1834–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinson SRM, Capdevielle FM, Oard JH. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci. 2005;45:503–10.

    CAS 
    Article 

    Google Scholar
     

  • Zou JH, Pan XB, Chen ZX, Xu JY, Lu JF, Zhai WX, et al. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet. 2000;101:569–73.

    CAS 
    Article 

    Google Scholar
     

  • Zuo SM, Yin YJ, Zhang L, Zhang YF, Chen ZX, Pan XB. Breeding value and further mapping of a QTL qSB-11 conferring the rice sheath blight resistance. Chinese J Rice Sci. 2007;21:136–42.

    CAS 

    Google Scholar
     

  • Oreiro EG, Grimares EKS, Grande GA, Quibod LL, Roman Reyna V, Oliva RF. Genome-wide associations and transcriptional profiling reveal ROS regulation as one underlying mechanism of sheath blight resistance in rice. Mol Plant-Microbe Interact. 2019;33:212–22.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang J, Chen L, Fu C, Wang L, Liu H, Cheng Y, et al. Comparative transcriptome analyses of gene expression changes triggered by Rhizoctonia solani AG1 IA infection in resistant and susceptible rice varieties. Front Plant Sci. 2017;8:1422.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fang W, Wang Z, Cui R, Li J, Li Y. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J. 2012;70:929–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kai K, Hashidzume H, Yoshimura K, Suzuki H, Ohta D. Metabolomics for the characterization of cytochromes P450-dependent fatty acid hydroxylation reactions in Arabidopsis. Plant Biotechnol-Nar. 2009;26:175–82.

    CAS 
    Article 

    Google Scholar
     

  • Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh JI, Nagato Y, et al. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci U S A. 2004;101:875–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun LQ, Zhu LF, Xu L, Yuan DJ, Min L, Zhang XL. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat Commun. 2014;5:5372.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu F, Jiang HL, Ye SQ, Chen WP, Liang WX, Xu YX, et al. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res. 2010;20(5):539–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cui YJ, Peng YL, Zhang Q, Xia SS, Ruan BP, Xu QK, et al. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J. 2020;4(105):942–56.


    Google Scholar
     

  • Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem. 2010;285:11308–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maeda S, Dubouzet JG, Kondou Y, Jikumaru Y, Seo S, Oda K, et al. The rice CYP78A gene BSR2 confers resistance to Rhizoctonia solani and affects seed size and growth in Arabidopsis and rice. Sci Rep. 2019;9:587.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guo HM, Li HC, Zhou SR, Xue HW, Miao XX. Cis-12-Oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect. Mol Plant. 2014;7(11):1683–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mei CS, Qi M, Sheng GY, Yang YN. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact. 2006;19(10):1127–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu J, Zhou JB, Peng XX, Xu HH, Liu CX, Du B, et al. The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol. 2011;156(2):856–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feng JX, Cao L, Li J, Duan CJ, Luo XM, Le N, et al. Involvement of OsNPR1/NH1 in rice basal resistance to blast fungus Magnaporthe oryzae. Eur J Plant Pathol. 2011;131(2):221–35.

    CAS 
    Article 

    Google Scholar
     

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lei ST, Zeng B, Xu SJ, Su XL. Membrane responses of Salix variegata and Cinnamomum camphora to complete submergence in the three gorges reservoir region. Acta Ecol Sin. 2012;5(32):227–31.

    Article 

    Google Scholar
     

  • Chen ZX, Feng ZM, Kang HX, Zhao JH, Chen TX, Li QQ, et al. Identification of new resistance loci against sheath blight disease in rice through genome-wide association study. Rice Sci. 2019;26:21–31.

    Article 

    Google Scholar
     

  • Zhang F, Wu ZC, Wang MM, Zhang F, Dingkuhn M, Xu JL, et al. Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm. PLoS One. 2017;12:e0174598.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li N, Lin B, Wang H, Li XM, Yang FF, Ding XH, et al. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet. 2019;51:1540–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jo HJ, Han JY, Hwang HS, Choi YE. β-Amyrin synthase (EsBAS) and β-amyrin 28-oxidase (CYP716A244) in oleanane-type triterpene saponin biosynthesis in Eleutherococcus senticosus. Phytochemistry. 2017;135:53–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tamura K, Teranishi Y, Ueda S, Suzuki H, Kawano N, Yoshimatsu K, et al. Cytochrome P450 monooxygenase CYP716A141 is a unique b-Amyrin C-16b oxidase involved in triterpenoid saponin biosynthesis in Platycodon grandifloras. Plant Cell Physiol. 2017;58(5):874–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yeon HJ, Su HH, Wan CS, Jung KH, Eui CY. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in panax ginseng. Plant Cell Physiol. 2012;53(9):1535–45.

    Article 
    CAS 

    Google Scholar
     

  • Wang HH, Meng J, Peng XX, Tang XK, Zhou PL, Xiang JH, et al. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight. Plant Mol Biol. 2015;89:157–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D, Suzuki T, et al. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. New Phytol. 2018;217(2):771–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu ZH, Liu YX, Pu ZE, Wang JR, Zheng YL, Li YH, et al. Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett. 2013;35:1765–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koes R, Quattrocchio F. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays. 1994;16(2):123–32.

    CAS 
    Article 

    Google Scholar
     

  • Liu Y, Hassan S, Kidd BN, Garg G, Mathesius U, Singh KB, et al. Ethylene signaling is important for isoflavonoid-mediated resistance to Rhizoctonia solani in roots of Medicago truncatula. Mol Plant-Microbe Interact. 2017;9(30):691–700.

    Article 

    Google Scholar
     

  • Padmavati M, Sakthivel N, Thara KV, Reddy AR. Differential sensitivity of rice pathogens to grown inhibition by flavonoids. Phytochemistry. 1997;46:499–502.

    CAS 
    Article 

    Google Scholar
     

  • Treutter D. Significance of flavonoids in plant resistance: a review. Environ Chem Lett. 2006;4:147–57.

    CAS 
    Article 

    Google Scholar
     

  • Yin X, Zou BH, Hong XX, Gao MJ, Yang WB, Zhong XB, et al. Rice copine genes OsBON1 and OsBON3 function as suppressors of broad-spectrum disease resistance. Plant Biotechnol J. 2018;16:1476–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li SC, Gao FY, Xie KL, Zeng XH, Cao Y, Zeng J, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J. 2016;14:2134–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Osato Y, Yokoyama R, Nishitani K. A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. J Plant Res. 2006;119:153–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu S, Wang LJ, Zhang B, Han B, Xie YJ, Yang J, et al. RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol. 2012;80:219–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kauffman HE, Reddy APK, Hsieh SPY, Merca SD. A improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzea. Plant Dis Rep. 1973;57:537–41.


    Google Scholar
     

  • Zhu XL, Yang K, Wei XN, Zhang QF, Rong W, Du LP, et al. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. J Exp Bot. 2015;66:6591–603.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goel N, Paul PK. Polyphenol oxidase and lysozyme mediate induction of systemic resistance in tomato, when a bioelicitor is used. J Plant Prot Res. 2015;55:343–50.

    CAS 
    Article 

    Google Scholar
     

  • Karmakar S, Molla KA, Chanda PK, Sarkar SN, Datta SK, Datta K. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta. 2016;243:115–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat 2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anders S, Huber W. Differential expression of RNA-Seq data at the gene level-the DESeq package. Heidelberg: EMBL; 2012.


    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol. 1995;57(1):289–300.


    Google Scholar
     

  • Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21:19.

    Article 

    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Z, Cui Y, Vainstein A, Chen S, Ma H. Regulation of fig (Ficus carica L.) fruit color: Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci. 2017;8:1990.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fiehn O. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1–2):155–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yun Y, Liang F, Deng B, Lai G, Vicente Gonçalves CM, Lu H, et al. Informative metabolites identification by variable importance analysis based on random variable combination. Metabolomics. 2015;11(6):1539–51.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)