• De La Vieja A, Dohan O, Levy O, Carrasco N. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev. 2000;80(3):1083–105.

    Article 

    Google Scholar
     

  • Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, et al. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets. 2010;10(2):242–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Llorente-Esteban A, Manville RW, Reyna-Neyra A, Abbott GW, Amzel LM, Carrasco N. Allosteric regulation of mammalian Na(+)/I(-) symporter activity by perchlorate. Nat Struct Mol Biol. 2020;27(6):533–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spitzweg C, Bible KC, Hofbauer LC, Morris JC. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol. 2014;2(10):830–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spitzweg C, Nelson PJ, Wagner E, Bartenstein P, Weber WA, Schwaiger M, et al. The sodium iodide symporter (NIS): novel applications for radionuclide imaging and treatment. Endocr Relat Cancer. 2021;28(10):T193–213.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Willhauck MJ, Sharif Samani BR, Gildehaus FJ, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, et al. Application of 188rhenium as an alternative radionuclide for treatment of prostate cancer after tumor-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab. 2007;92(11):4451–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Willhauck MJ, Samani BR, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Meyer GJ, et al. The potential of 211Astatine for NIS-mediated radionuclide therapy in prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(7):1272–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG. Rhenium-188 as an alternative to Iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol. 2002;29(1):13–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379(6564):458–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shimura H, Haraguchi K, Miyazaki A, Endo T, Onaya T. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I- symporter gene. Endocrinology. 1997;138(10):4493–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hager S, Wagner E. Bioresponsive polyplexes—chemically programmed for nucleic acid delivery. Expert Opin Drug Deliv. 2018;15(11):1067–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klutz K, Schaffert D, Willhauck MJ, Grunwald GK, Haase R, Wunderlich N, et al. Epidermal growth factor receptor-targeted (131)I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol Ther. 2011;19(4):676–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lachelt U, Wagner E. Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev. 2015;115(19):11043–78.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schafer A, Pahnke A, Schaffert D, van Weerden WM, de Ridder CM, Rodl W, et al. Disconnecting the yin and yang relation of epidermal growth factor receptor (EGFR)-mediated delivery: a fully synthetic, EGFR-targeted gene transfer system avoiding receptor activation. Hum Gene Ther. 2011;22(12):1463–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmohl KA, Dolp P, Schug C, Knoop K, Klutz K, Schwenk N, et al. Reintroducing the sodium-iodide symporter to anaplastic thyroid carcinoma. Thyroid. 2017;27(12):1534–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schmohl KA, Gupta A, Grunwald GK, Trajkovic-Arsic M, Klutz K, Braren R, et al. Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene. Oncotarget. 2017;8(20):33393–404.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Urnauer S, Muller AM, Schug C, Schmohl KA, Tutter M, Schwenk N, et al. EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases. Oncotarget. 2017;8(54):92195–208.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He D, Wagner E. Defined polymeric materials for gene delivery. Macromol Biosci. 2015;15(5):600–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kos P, Lachelt U, Herrmann A, Mickler FM, Doblinger M, He D, et al. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale. 2015;7(12):5350–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Urnauer S, Morys S, Krhac Levacic A, Muller AM, Schug C, Schmohl KA, et al. Sequence-defined cMET/HGFR-targeted polymers as gene delivery vehicles for the theranostic sodium iodide symporter (NIS) gene. Mol Ther. 2016;24(8):1395–404.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Urnauer S, Schmohl KA, Tutter M, Schug C, Schwenk N, Morys S, et al. Dual-targeted NIS polyplexes-a theranostic strategy toward tumors with heterogeneous receptor expression. Gene Ther. 2019;26(3–4):93–108.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hagenhoff A, Bruns CJ, Zhao Y, von Luttichau I, Niess H, Spitzweg C, et al. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther. 2016;16(9):1079–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Melzer C, Yang Y, Hass R. Interaction of MSC with tumor cells. Cell Commun Signal. 2016;14(1):20.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schmohl KA, Müller AM, Wechselberger A, Rühland S, Salb N, Schwenk N, et al. Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3. Endocr Relat Cancer. 2015;22(6):941–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Droujinine IA, Eckert MA, Zhao W. To grab the stroma by the horns: from biology to cancer therapy with mesenchymal stem cells. Oncotarget. 2013;4(5):651–64.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Niess H, von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer. 2015;15:237.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Knoop K, Kolokythas M, Klutz K, Willhauck MJ, Wunderlich N, Draganovici D, et al. Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol Ther. 2011;19(9):1704–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Knoop K, Schwenk N, Dolp P, Willhauck MJ, Zischek C, Zach C, et al. Stromal targeting of sodium iodide symporter using mesenchymal stem cells allows enhanced imaging and therapy of hepatocellular carcinoma. Hum Gene Ther. 2013;24(3):306–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Knoop K, Schwenk N, Schmohl K, Muller A, Zach C, Cyran C, et al. Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene. J Nucl Med. 2015;56(4):600–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schug C, Gupta A, Urnauer S, Steiger K, Cheung PF, Neander C, et al. A novel approach for image-guided (131)I therapy of pancreatic ductal adenocarcinoma using mesenchymal stem cell-mediated NIS gene delivery. Mol Cancer Res. 2019;17(1):310–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muller AM, Schmohl KA, Knoop K, Schug C, Urnauer S, Hagenhoff A, et al. Hypoxia-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated sodium iodide symporter gene delivery. Oncotarget. 2016;7(34):54795–810.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schug C, Urnauer S, Jaeckel C, Schmohl KA, Tutter M, Steiger K, et al. TGFB1-driven mesenchymal stem cell-mediated NIS gene transfer. Endocr Relat Cancer. 2019;26(1):89–101.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 2007;67(24):11687–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schug C, Sievert W, Urnauer S, Muller AM, Schmohl KA, Wechselberger A, et al. External beam radiation therapy enhances mesenchymal stem cell-mediated sodium-iodide symporter gene delivery. Hum Gene Ther. 2018;29(11):1287–300.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schug C, Kitzberger C, Sievert W, Spellerberg R, Tutter M, Schmohl KA, et al. Radiation-induced amplification of TGFB1-induced mesenchymal stem cell-mediated sodium iodide symporter (NIS) gene (131)I therapy. Clin Cancer Res. 2019;25(19):5997–6008.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tutter M, Schug C, Schmohl KA, Urnauer S, Kitzberger C, Schwenk N, et al. Regional hyperthermia enhances mesenchymal stem cell recruitment to tumor stroma: implications for mesenchymal stem cell-based tumor therapy. Mol Ther. 2021;29(2):788–803.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tutter M, Schug C, Schmohl KA, Urnauer S, Schwenk N, Petrini M, et al. Effective control of tumor growth through spatial and temporal control of theranostic sodium iodide symporter (NIS) gene expression using a heat-inducible gene promoter in engineered mesenchymal stem cells. Theranostics. 2020;10(10):4490–506.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM, Carrasco N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol. 2017;79:261–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang H, DeGrado TR. [(18)F]Tetrafluoroborate ([(18)F]TFB) and its analogs for PET imaging of the sodium/iodide symporter. Theranostics. 2018;8(14):3918–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Samnick S, Al-Momani E, Schmid JS, Mottok A, Buck AK, Lapa C. Initial clinical investigation of [18F]tetrafluoroborate PET/CT in comparison to [124I]iodine PET/CT for imaging thyroid cancer. Clin Nucl Med. 2018;43(3):162–7.

    PubMed 
    Article 

    Google Scholar
     

  • Portulano C, Paroder-Belenitsky M, Carrasco N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev. 2014;35(1):106–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dittmann M, Gonzalez Carvalho JM, Rahbar K, Schafers M, Claesener M, Riemann B, et al. Incremental diagnostic value of [(18)F]tetrafluoroborate PET-CT compared to [(131)I]iodine scintigraphy in recurrent differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2020;47(11):2639–46.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jauregui-Osoro M, Sunassee K, Weeks AJ, Berry DJ, Paul RL, Cleij M, et al. Synthesis and biological evaluation of [(18)F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur J Nucl Med Mol Imaging. 2010;37(11):2108–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khoshnevisan A, Jauregui-Osoro M, Shaw K, Torres JB, Young JD, Ramakrishnan NK, et al. [(18)F]tetrafluoroborate as a PET tracer for the sodium/iodide symporter: the importance of specific activity. EJNMMI Res. 2016;6(1):34.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • O’Doherty J, Jauregui-Osoro M, Brothwood T, Szyszko T, Marsden PK, O’Doherty MJ, et al. (18)F-Tetrafluoroborate, a PET probe for imaging sodium/iodide symporter expression: whole-body biodistribution, safety, and radiation dosimetry in thyroid cancer patients. J Nucl Med. 2017;58(10):1666–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang H, Schmit NR, Koenen AR, Bansal A, Pandey MK, Glynn RB, et al. Safety, pharmacokinetics, metabolism and radiation dosimetry of (18)F-tetrafluoroborate ((18)F-TFB) in healthy human subjects. EJNMMI Res. 2017;7(1):90.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jiang H, Bansal A, Pandey MK, Peng KW, Suksanpaisan L, Russell SJ, et al. Synthesis of 18F-tetrafluoroborate via radiofluorination of boron trifluoride and evaluation in a murine C6-glioma tumor model. J Nucl Med. 2016;57(9):1454–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nagarajah J, Le M, Knauf JA, Ferrandino G, Montero-Conde C, Pillarsetty N, et al. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J Clin Investig. 2016;126(11):4119–24.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Diocou S, Volpe A, Jauregui-Osoro M, Boudjemeline M, Chuamsaamarkkee K, Man F, et al. [(18)F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model. Sci Rep. 2017;7(1):946.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verburg FA, Giovanella L, Hoffmann M, Iakovou I, Mihailovic J, Ovcaricek PP, et al. New! F-18-based PET/CT for sodium-iodine-symporter-targeted imaging! Eur J Nucl Med Mol Imaging. 2020;47(11):2484–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    PubMed 
    Article 

    Google Scholar
     

  • Guo R, Xi Y, Zhang M, Miao Y, Zhang M, Li B. Human sodium iodide transporter gene-mediated imaging and therapy of mouse glioma, comparison between (188)Re and (131)I. Oncol Lett. 2018;15(3):3911–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho JY, Shen DH, Yang W, Williams B, Buckwalter TL, La Perle KM, et al. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther. 2002;9(17):1139–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Opyrchal M, Allen C, Iankov I, Aderca I, Schroeder M, Sarkaria J, et al. Effective radiovirotherapy for malignant gliomas by using oncolytic measles virus strains encoding the sodium iodide symporter (MV-NIS). Hum Gene Ther. 2012;23(4):419–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spellerberg R, Benli-Hoppe T, Kitzberger C, Berger S, Schmohl KA, Schwenk N, et al. Selective sodium iodide symporter (NIS) gene therapy of glioblastoma mediated by EGFR-targeted lipopolyplexes. Mol Ther Oncolytics. 2021;23:432–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jentzen W, Hoppenbrouwers J, van Leeuwen P, van der Velden D, van de Kolk R, Poeppel TD, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55(11):1759–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castillo-Rivera F, Ondo-Mendez A, Guglielmi J, Guigonis JM, Jing L, Lindenthal S, et al. Tumor microenvironment affects exogenous sodium/iodide symporter expression. Transl Oncol. 2021;14(1):100937.

    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    By admin