• Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R, et al. Von Hippel-Lindau disease: a genetic study. J Med Genet. 1991;28(7):443–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maddock IR, Moran A, Maher ER, Teare MD, Norman A, Payne SJ, et al. A genetic register for von Hippel-Lindau disease. J Med Genet. 1996;33(2):120–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15(1):55–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crespigio J, Berbel LCL, Dias MA, Berbel RF, Pereira SS, Pignatelli D, et al. Von Hippel-Lindau disease: a single gene, several hereditary tumors. J Endocrinol Invest. 2018;41(1):21–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Richards FM, Payne SJ, Zbar B, Affara NA, Ferguson-Smith MA, Maher ER. Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet. 1995;4(11):2139–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, et al. von Hippel-Lindau disease. Lancet. 2003;361(9374):2059–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perrotta S, Roberti D, Bencivenga D, Corsetto P, O’Brien KA, Caiazza M, et al. Effects of germline VHL deficiency on growth, metabolism, and mitochondria. N Engl J Med. 2020;382(9):835–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2α regulates estrogen receptor α expression in normoxic breast cancer cells. FEBS Lett. 2016;590(16):2690–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2(7):423–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature. 2002;417(6892):975–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science. 2002;296(5574):1886–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A, Viale A, et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med. 2013;19(1):50–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kappler M, Taubert H, Eckert AW. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011;365(19):1845–6 (author reply 6).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J, et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020;48(D1):D835–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet. 2001;10(10):1029–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miller F, Kentsis A, Osman R, Pan ZQ. Inactivation of VHL by tumorigenic mutations that disrupt dynamic coupling of the pVHL hypoxia-inducible transcription factor-1alpha complex. J Biol Chem. 2005;280(9):7985–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yuan Y, Hilliard G, Ferguson T, Millhorn DE. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem. 2003;278(18):15911–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rahman SU, Lee MS, Baek JH, Ryoo HM, Woo KM. The prolyl hydroxylase inhibitor dimethyloxalylglycine enhances dentin sialophoshoprotein expression through VEGF-induced Runx2 stabilization. PLoS ONE. 2014;9(11): e112078.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Åström M, Tajeddinn W, Karlsson MG, Linder O, Palmblad J, Lindblad P. Cytokine measurements for diagnosing and characterizing leukemoid reactions and immunohistochemical validation of a granulocyte colony-stimulating factor and CXCL8-producing renal cell carcinoma. Biomark Insights. 2018;13:1177271918792246.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fritzsche FR, Wassermann K, Jung M, Tölle A, Kristiansen I, Lein M, et al. ADAM9 is highly expressed in renal cell cancer and is associated with tumour progression. BMC Cancer. 2008;8:179.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang ZY, Zhang SL, Chen HL, Mao YQ, Li ZM, Kong CY, et al. The up-regulation of NDRG1 by HIF counteracts the cancer-promoting effect of HIF in VHL-deficient clear cell renal cell carcinoma. Cell Prolif. 2020;53(7): e12853.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yoshida T, Kageyama S, Isono T, Yuasa T, Kushima R, Kawauchi A, et al. Superoxide dismutase 2 expression can predict prognosis of renal cell carcinoma patients. Cancer Biomark. 2018;22(4):755–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, et al. A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nat Commun. 2019;10(1):1152.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Reavey JJ, Walker C, Murray AA, Brito-Mutunayagam S, Sweeney S, Nicol M, et al. Obesity is associated with heavy menstruation that may be due to delayed endometrial repair. J Endocrinol. 2021;249(2):71–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chédeville AL, Lourdusamy A, Monteiro AR, Hill R, Madureira PA. Investigating glioblastoma response to hypoxia. Biomedicines. 2020;8(9):310.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem. 2008;283(42):28106–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kasashima H, Yashiro M, Kinoshita H, Fukuoka T, Morisaki T, Masuda G, et al. Lysyl oxidase is associated with the epithelial-mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer. 2016;19(2):431–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Corn PG, Ricci MS, Scata KA, Arsham AM, Simon MC, Dicker DT, et al. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol Ther. 2005;4(11):1285–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene. 2018;37(8):1062–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mo Z, Yu L, Cao Z, Hu H, Luo S, Zhang S. Identification of a hypoxia-associated signature for lung adenocarcinoma. Front Genet. 2020;11:647.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mardilovich K, Shaw LM. Hypoxia regulates insulin receptor substrate-2 expression to promote breast carcinoma cell survival and invasion. Cancer Res. 2009;69(23):8894–901.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lei Y, Chen T, Li Y, Shang M, Zhang Y, Jin Y, et al. O-GlcNAcylation of PFKFB3 is required for tumor cell proliferation under hypoxia. Oncogenesis. 2020;9(2):21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu CC, Wang H, Wang WD, Wang L, Liu WJ, Wang JH, et al. ENO2 promotes cell proliferation, glycolysis, and glucocorticoid-resistance in acute lymphoblastic leukemia. Cell Physiol Biochem. 2018;46(4):1525–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, et al. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell. 2018;71(2):201-15.e7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang J, Yang J, Lin C, Liu W, Huo Y, Yang M, et al. Endoplasmic Reticulum stress-dependent expression of ERO1L promotes aerobic glycolysis in Pancreatic Cancer. Theranostics. 2020;10(18):8400–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cao XP, Cao Y, Li WJ, Zhang HH, Zhu ZM. P4HA1/HIF1α feedback loop drives the glycolytic and malignant phenotypes of pancreatic cancer. Biochem Biophys Res Commun. 2019;516(3):606–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mercado-Matos J, Janusis J, Zhu S, Chen SS, Shaw LM. Identification of a novel invasion-promoting region in insulin receptor substrate 2. Mol Cell Biol. 2018. https://doi.org/10.1128/MCB.00590-17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costanza B, Rademaker G, Tiamiou A, De Tullio P, Leenders J, Blomme A, et al. Transforming growth factor beta-induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration. Int J Cancer. 2019;145(6):1570–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.

    PubMed 
    Article 

    Google Scholar
     

  • Tedesco L, Elguero B, Pacin DG, Senin S, Pollak C, Garcia Marchiñena PA, et al. von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME. Cell Death Dis. 2019;10(4):266.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, et al. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther. 2020;5(1):228.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124(4):1853–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ford CE, Jary E, Ma SS, Nixdorf S, Heinzelmann-Schwarz VA, Ward RL. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells. PLoS ONE. 2013;8(1): e54362.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang Q, Wang Y, Pan X, Ye J, Gan S, Qu F, et al. Frizzled 8 promotes the cell proliferation and metastasis of renal cell carcinoma. Oncotarget. 2017;8(45):78989–9002.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Murillo-Garzón V, Gorroño-Etxebarria I, Åkerfelt M, Puustinen MC, Sistonen L, Nees M, et al. Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer. Nat Commun. 2018;9(1):1747.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang J, Zhang Z, Li R, Mao F, Sun W, Chen J, et al. ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway. Biomed Pharmacother. 2018;97:1066–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, Rodrigues-Diez R, Falke LL, Mezzano S, et al. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol. 2018;244(2):227–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Natsuizaka M, Kinugasa H, Kagawa S, Whelan KA, Naganuma S, Subramanian H, et al. IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment. Am J Cancer Res. 2014;4(1):29–41.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen T, Yang Z, Cheng X, Xiao Y, Yu K, Cai X, et al. CXCL8 induces epithelial-mesenchymal transition in colon cancer cells via the PI3K/Akt/NF-κB signaling pathway. Oncol Rep. 2017;37(4):2095–100.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 2005;11(16):5730–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beroukhim R, Brunet JP, Di Napoli A, Mertz KD, Seeley A, Pires MM, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 2009;69(11):4674–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gumz ML, Zou H, Kreinest PA, Childs AC, Belmonte LS, LeGrand SN, et al. Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin Cancer Res. 2007;13(16):4740–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Higgins JP, Shinghal R, Gill H, Reese JH, Terris M, Cohen RJ, et al. Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol. 2003;162(3):925–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lenburg ME, Liou LS, Gerry NP, Frampton GM, Cohen HT, Christman MF. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer. 2003;3:31.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 2009;9:152.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhao H, Ljungberg B, Grankvist K, Rasmuson T, Tibshirani R, Brooks JD. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006;3(1): e13.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schokrpur S, Hu J, Moughon DL, Liu P, Lin LC, Hermann K, Mangul S, Guan W, Pellegrini M, Xu H, Wu L. CRISPR-mediated VHL knockout generates an improved model for metastatic renal cell carcinoma. Sci Rep. 2016;30(6):29032.

    Article 
    CAS 

    Google Scholar
     

  • Hong B, Ma K, Zhou J, Zhang J, Wang J, Liu S, et al. Frequent mutations of VHL gene and the clinical phenotypes in the largest chinese cohort with Von Hippel-Lindau disease. Front Genet. 2019;10:867.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dollfus H, Massin P, Taupin P, Nemeth C, Amara S, Giraud S, et al. Retinal hemangioblastoma in von Hippel-Lindau disease: a clinical and molecular study. Invest Ophthalmol Vis Sci. 2002;43(9):3067–74.

    PubMed 

    Google Scholar
     

  • Gallou C, Longuemaux S, Deloménie C, Méjean A, Martin N, Martinet S, et al. Association of GSTT1 non-null and NAT1 slow/rapid genotypes with von Hippel-Lindau tumour suppressor gene transversions in sporadic renal cell carcinoma. Pharmacogenetics. 2001;11(6):521–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu SJ, Wang JY, Peng SH, Li T, Ning XH, Hong BA, et al. Genotype and phenotype correlation in von Hippel-Lindau disease based on alteration of the HIF-α binding site in VHL protein. Genet Med. 2018;20(10):1266–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ong KR, Woodward ER, Killick P, Lim C, Macdonald F, Maher ER. Genotype-phenotype correlations in von Hippel-Lindau disease. Hum Mutat. 2007;28(2):143–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tarade D, Ohh M. The HIF and other quandaries in VHL disease. Oncogene. 2018;37(2):139–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gudas LJ, Fu L, Minton DR, Mongan NP, Nanus DM. The role of HIF1α in renal cell carcinoma tumorigenesis. J Mol Med (Berl). 2014;92(8):825–36.

    CAS 
    Article 

    Google Scholar
     

  • Yao X, Tan J, Lim KJ, Koh J, Ooi WF, Li Z, et al. VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma. Cancer Discov. 2017;7(11):1284–305.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrews S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. 2009.

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q, et al. Nucleosome dynamics define transcriptional enhancers. Nat Genet. 2010;42(4):343–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31(14):2382–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44(W1):W160–5.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu G. Enrichplot: visualization of functional enrichment result. R package version 181. 2021.

  • Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1):279–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bhandari V, Hoey C, Liu LY, Lalonde E, Ray J, Livingstone J, et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet. 2019;51(2):308–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    PubMed 
    Article 

    Google Scholar
     

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Therneau T. A package for survival analysis in R. R package version 32–3. 2020.

  • Kassambara A, Kosinski M, Biecek P, Fabian S. Survminer: Drawing survival curves using ‘ggplot2’. R package version 047. 2020.

  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.

    Article 
    CAS 

    Google Scholar
     

  • Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173(2):291-304.e6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)