• Gupta SK, Shukla P. Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol. 2017;37(5):672–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell line techniques and gene editing tools for antibody production: a review. Front Pharmacol. 2018;9:630.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Franic D, Dobrinic P, Korac P. Key achievements in gene therapy development and its promising progress with gene editing tools (ZFN, TALEN, CRISPR/CAS9). Mol Exp Biol Med. 2019;2(1):1–9.

    Article 

    Google Scholar
     

  • Kaboli S, Babazada H. CRISPR mediated genome engineering and its application in industry. Curr Issues Mol Biol. 2018;26(1):81–92.

    PubMed 
    Article 

    Google Scholar
     

  • Pattharaprachayakul N, Lee M, Incharoensakdi A, Woo HM. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme Microbial Technol. 2020;140:109619.

    CAS 
    Article 

    Google Scholar
     

  • Li R, Zatloukalova P, Muller P, Gil-Mir M, Kote S, Wilkinson S, Kemp AJ, Hernychova L, Wang Y, Ball KL. The MDM2 ligand Nutlin-3 differentially alters expression of the immune blockade receptors PD-L1 and CD276. Cell Mol Biol Lett. 2020;25(1):1–21.

    Article 
    CAS 

    Google Scholar
     

  • Mojica FJ, Rodriguez-Valera F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016;283(17):3162–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang M, Eshraghian EA, Al Jammal O, Zhang Z, Zhu X. CRISPR technology: the engine that drives cancer therapy. Biomed Pharmacother. 2021;133:111007.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: opportunities and challenges. Cancer Lett. 2019;447:48–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, Liu X, Lv Z, Yang P, Xu W. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer. 2021;20(1):1–22.

    Article 

    Google Scholar
     

  • Rodríguez TC, Dadafarin S, Pratt HE, Liu P, Amrani N, Zhu LJ. Genome-wide detection and analysis of CRISPR-Cas off-targets. Progress in molecular biology and translational science. 181: Elsevier; 2021. p. 31–43.

  • Cheng DK, Oni TE, Thalappillil JS, Park Y, Ting H-C, Alagesan B, Prasad NV, Addison K, Rivera KD, Pappin DJ. Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer. Proc Natl Acad Sci. 2021;118(21).

  • Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, Pölönen P, Hohtari H, Saeed K, Hannunen T. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood. 2020;135(9):597–609.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu W, Zi Z, Jin Y, Li G, Shao K, Cai Q, Ma X, Wei F. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother. 2019;68(3):365–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, Adams DJ. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet. 2018;14(7):e1007503.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Razeghian E, Nasution MKM, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, Bokov DO, Suksatan W, Nakhaei P, Shariatzadeh S, et al. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther. 2021;12(1):428.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;208:44–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu M, Han X, Liu H, Chen D, Li Y, Hu W. The effects of CRISPR-Cas9 knockout of the TGF-β1 gene on antler cartilage cells in vitro. Cell Mol Biol Lett. 2019;24(1):1–12.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Faure G, Shmakov SA, Makarova KS, Wolf YI, Crawley AB, Barrangou R, Koonin EV. Comparative genomics and evolution of trans-activating RNAs in class 2 CRISPR-Cas systems. RNA Biol. 2019;16(4):435–48.

    PubMed 
    Article 

    Google Scholar
     

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wong N, Liu W, Wang X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 2015;16:218.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allen D, Rosenberg M, Hendel A. Using synthetically engineered guide RNAs to enhance CRISPR genome editing systems in mammalian cells. Front Genome Editing. 2021;2.

  • Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading). 2005;151(Pt 3):653–63.

    CAS 
    Article 

    Google Scholar
     

  • Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1390–400.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp (Warsz). 2017;65(3):233–40.

    CAS 
    Article 

    Google Scholar
     

  • Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to improve CRISPR/Cas9 knockout efficiency: special focus on human and animal cell. Front Bioeng Biotechnol 2021;9:775309.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol. 2011;9(6):467–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell. 2016;165(4):949–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013;110(39):15644–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou J, Shen B, Zhang W, Wang J, Yang J, Chen L, Zhang N, Zhu K, Xu J, Hu B. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol. 2014;46:49–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kennedy EM, Kornepati AV, Mefferd AL, Marshall JB, Tsai K, Bogerd HP, Cullen BR. Optimization of a multiplex CRISPR/Cas system for use as an antiviral therapeutic. Methods. 2015;91:82–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Uranga M, Aragonés V, Selma S, Vázquez-Vilar M, Orzáez D, Daròs JA. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Plant J. 2021;106(2):555–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang J, Yang J, Li D, Li J. Technologies for targeting DNA methylation modifications: basic mechanism and potential application in cancer. Biochim Biophys Acta Rev Cancer 2021;1875(1):188454.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu X, Tay JK, Goh CK, Chan C, Lee YH, Springs SL, Loh KS, Lu TK, Yu H. Digital CRISPR-based method for the rapid detection and absolute quantification of nucleic acids. Biomaterials. 2021;274:120876.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, Strine MS, Zhang S-M, Graziano VR, Schmitz CO. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell. 2021;184(1):76–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao K-R, Wang L, Liu P-F, Hang X-M, Wang H-Y, Ye S-Y, Liu Z-J, Liang G-X. A signal-switchable electrochemiluminescence biosensor based on the integration of spherical nucleic acid and CRISPR/Cas12a for multiplex detection of HIV/HPV DNAs. Sens Actuators B: Chem. 2021;346:130485.

    CAS 
    Article 

    Google Scholar
     

  • Kennedy EM, Cullen BR. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology. 2015;479:213–20.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lin H, Li G, Peng X, Deng A, Ye L, Shi L, Wang T, He J. The use of CRISPR/Cas9 as a tool to study human infectious viruses. Front Cell Infect Microbiol. 2021;11.

  • Saayman S, Ali SA, Morris KV, Weinberg MS. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. 2015;15(6):819–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Azar M, Aghazadeh H, Mohammed HN, Sara MRS, Hosseini A, Shomali N, Tamjidifar R, Tarzi S, Mansouri M, Sarand SP, et al. miR-193a-5p as a promising therapeutic candidate in colorectal cancer by reducing 5-FU and Oxaliplatin chemoresistance by targeting CXCR4. Int Immunopharmacol. 2021;92:107355.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3(1):1–7.

    Article 

    Google Scholar
     

  • Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, Zhuang K, Ho W, Hou W, Huang J, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep. 2015;5:15577.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Paoli P, Carbone A. Carcinogenic viruses and solid cancers without sufficient evidence of causal association. Int J Cancer. 2013;133(7):1517–29.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Donà S, Borsetto D, Fussey J, Biscaro V, Vian E, Spinato G, Menegaldo A, Da Mosto MC, Rigoli R, Polesel J. Association between hepatitis C and B viruses and head and neck squamous cell carcinoma. J Clin Virol. 2019;121:104209.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 2015;22(5):404–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 2015;118:110–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kostyushev D, Kostyusheva A, Brezgin S, Zarifyan D, Utkina A, Goptar I, Chulanov V. Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by CRISPR/Cas9. Sci Rep. 2019;9(1):1847.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Jiang H, Wang T, He D, Tian R, Cui Z, Tian X, Gao Q, Ma X, Yang J, et al. In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs’ cleavage by CRISPR/Cas13a system. Antiviral Res. 2020;178:104794.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ling K, Yang L, Yang N, Chen M, Wang Y, Liang S, Li Y, Jiang L, Yan P, Liang Z. Gene targeting of HPV18 E6 and E7 synchronously by nonviral transfection of CRISPR/Cas9 system in cervical cancer. Hum Gene Ther. 2020;31(5–6):297–308.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int. 2014;2014:612823.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akasu M, Shimada S, Kabashima A, Akiyama Y, Shimokawa M, Akahoshi K, Kudo A, Yamaoka S, Tanabe M, Tanaka S. Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. 2021.

  • Srour N, Villarreal OD, Yu Z, Preston S, Miller WH, Szewczyk MM, Barsyte-Lovejoy D, Xu H, del Rincón SV, Richard S. PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. bioRxiv. 2021.

  • Shomali N, Hatamnezhad LS, Tarzi S, Tamjidifar R, Xu H, Shotorbani SS. Heat shock proteins regulating toll-like receptors and the immune system could be a novel therapeutic target for melanoma. Curr Mol Med. 2021;21(1):15–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhen S, Lu J, Liu Y-H, Chen W, Li X. Synergistic antitumor effect on cervical cancer by rational combination of PD1 blockade and CRISPR-Cas9-mediated HPV knockout. Cancer Gene Ther. 2020;27(3):168–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hosseinzadeh R, Feizisani F, Shomali N, Abdelbasset WK, Hemmatzadeh M, Gholizadeh Navashenaq J, Jadidi-Niaragh F, Bokov DO, Janebifam M, Mohammadi H. PD-1/PD-L1 blockade: prospectives for immunotherapy in cancer and autoimmunity. IUBMB Life. 2021;73(11):1293–306.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bikard D, Barrangou R. Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol. 2017;37:155–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strich JR, Chertow DS. CRISPR-Cas biology and its application to infectious diseases. J Clin Microbiol. 2019;57(4):e01307-e1318.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Milunsky A, Milunsky JM. Genetic disorders and the fetus: diagnosis, prevention, and treatment. Hoboken: Wiley; 2015.

    Book 

    Google Scholar
     

  • Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, Gallone G, Lelieveld SH, Martin HC, McRae JF. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586(7831):757–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu X, Wan T, Xin H, Li D, Pan H, Wu J, Ping Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J Gene Med. 2019;21(7):e3107.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sharma G, Sharma AR, Bhattacharya M, Lee S-S, Chakraborty C. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 2021;29(2):571–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Asher DR, Thapa K, Dharia SD, Khan N, Potter RA, Rodino-Klapac LR, Mendell JR. Clinical development on the frontier: gene therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther. 2020;20(3):263–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Izmiryan A, Ganier C, Bovolenta M, Schmitt A, Mavilio F, Hovnanian A. Ex vivo COL7A1 correction for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9 and homology-directed repair. Mol Therapy-Nucleic Acids. 2018;12:554–67.

    CAS 
    Article 

    Google Scholar
     

  • Gurumurthy CB, Sato M, Nakamura A, Inui M, Kawano N, Islam MA, Ogiwara S, Takabayashi S, Matsuyama M, Nakagawa S. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat Protoc. 2019;14(8):2452–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972;175(4025):949–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dowaidar M. Genome-wide association studies (GWAS) have revolutionized our view of human health and disease genetics and offered novel gene therapy targets. 2021.

  • Pavani G, Fabiano A, Laurent M, Amor F, Cantelli E, Chalumeau A, Maule G, Tachtsidi A, Concordet J-P, Cereseto A. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood Adv. 2021;5(5):1137–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frangoul H, Bobruff Y, Cappellini MD, Corbacioglu S, Fernandez CM, De la Fuente J, Grupp SA, Handgretinger R, Ho TW, Imren S. Safety and efficacy of CTX001 in patients with transfusion-dependent β-thalassemia and sickle cell disease: early results from the climb THAL-111 and climb SCD-121 studies of autologous CRISPR-CAS9-modified CD34+ hematopoietic stem and progenitor cells. Blood. 2020;136:3–4.

    Article 

    Google Scholar
     

  • Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24(9):1526–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li N, Gou S, Wang J, Zhang Q, Huang X, Xie J, Li L, Jin Q, Ouyang Z, Chen F. CRISPR/Cas9-mediated gene correction in newborn rabbits with hereditary tyrosinemia type I. Mol Ther. 2021;29(3):1001–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Min Y-L, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med. 2019;70:239–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016;18(4):533–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park C-Y, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim J-H, Kim D-W, Kim J-S. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med. 2016;8(5):477–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marangi M, Pistritto G. Innovative therapeutic strategies for cystic fibrosis: moving forward to CRISPR technique. Front Pharmacol. 2018;9:396.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tu Z, Yang W, Yan S, Guo X, Li X-J. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener. 2015;10(1):1–8.

    CAS 
    Article 

    Google Scholar
     

  • Rahman S, Datta M, Kim J, Jan AT, editors. CRISPR/Cas: An intriguing genomic editing tool with prospects in treating neurodegenerative diseases. Seminars in cell & developmental biology; 2019: Elsevier.

  • Qian Y, Zhao D, Sui T, Chen M, Liu Z, Liu H, Zhang T, Chen S, Lai L, Li Z. Efficient and precise generation of Tay-Sachs disease model in rabbit by prime editing system. Cell Discovery. 2021;7(1):1–3.

    Article 
    CAS 

    Google Scholar
     

  • Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, Park HM, Brenner R, Murthy N, Lee HY. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2(7):497–507.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yrigollen CM, Davidson BL. CRISPR to the rescue: advances in gene editing for the FMR1 gene. Brain Sci. 2019;9(1):17.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang B. CRISPR/Cas gene therapy. J Cell Physiol. 2021;236(4):2459–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wan T, Ping Y. Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv Drug Deliv Rev. 2021;168:196–216.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lockyer EJ. The potential of CRISPR-Cas9 for treating genetic disorders. Biosci Horizons Int J Stud Res. 2016;9.

  • Luthra R, Kaur S, Bhandari K. Applications of CRISPR as a potential therapeutic. Life Sci. 2021;284:119908.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pandey V, Tripathi A, Bhushan R, Ali A, Dubey P, Therapy G. Application of CRISPR/Cas9 genome editing in genetic disorders: a systematic review up to date. J Genet Syndr Gene Ther. 2017;8(2):1–10.

    Article 

    Google Scholar
     

  • Li C, Mei H, Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief Funct Genomics. 2020;19(3):175–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang Y, Chen X, Yao W, Cui X, Li N, Lin Z, Zhao B, Miao J. Esterase D stabilizes FKBP25 to suppress mTORC1. Cell Mol Biol Lett. 2021;26(1):50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li W, Wu L, Jia H, Lin Z, Zhong R, Li Y, Jiang C, Liu S, Zhou X, Zhang E. The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression. Cell Mol Biol Lett. 2021;26(1):45.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Zhang F, Chen Q, Wan C, Xiong J, Xu J. CRISPR/Cas9-mediated knockout of NSD1 suppresses the hepatocellular carcinoma development via the NSD1/H3/Wnt10b signaling pathway. J Exp Clin Cancer Res. 2019;38(1):467.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guan L, Zhu S, Han Y, Yang C, Liu Y, Qiao L, Li X, Li H, Lin J. Knockout of CTNNB1 by CRISPR-Cas9 technology inhibits cell proliferation through the Wnt/β-catenin signaling pathway. Biotechnol Lett. 2018;40(3):501–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin C, Yuan FL, Gu YL, Li X, Liu MF, Shen XM, Liu B, Zhu MQ. Over-expression of ASIC1a promotes proliferation via activation of the β-catenin/LEF-TCF axis and is associated with disease outcome in liver cancer. Oncotarget. 2017;8(16):25977–88.

    PubMed 
    Article 

    Google Scholar
     

  • Novak A, Dedhar S. Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci. 1999;56(5–6):523–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Y, Zhuang H, Cao F, Li J, Guo Y, Zhang J, Zhao Q, Liu Y. Shc3 promotes hepatocellular carcinoma stemness and drug resistance by interacting with β-catenin to inhibit its ubiquitin degradation pathway. Cell Death Dis. 2021;12(3):1–15.


    Google Scholar
     

  • Chen T, Lin J, Tang D, Zhang M, Wen F, Xue D, Zhang H. Paris saponin H suppresses human hepatocellular carcinoma (HCC) by inactivation of Wnt/β-catenin pathway in vitro and in vivo. Int J Clin Exp Pathol. 2019;12(8):2875.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fawzy IO, Hamza MT, Hosny KA, Esmat G, Abdelaziz AI. Abrogating the interplay between IGF2BP1, 2 and 3 and IGF1R by let-7i arrests hepatocellular carcinoma growth. Growth Factors. 2016;34(1–2):42–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cai X, Chen Y, Man D, Yang B, Feng X, Zhang D, Chen J, Wu J. RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discovery. 2021;7(1):315.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang J, Hu K, Yang YQ, Wang Y, Zheng YF, Jin Y, Li P, Cheng L. LIN28B-AS1-IGF2BP1 binding promotes hepatocellular carcinoma cell progression. Cell Death Dis. 2020;11(9):741.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Müller S, Glaß M, Singh AK, Haase J, Bley N, Fuchs T, Lederer M, Dahl A, Huang H, Chen J, et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 2019;47(1):375–90.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Joseph ELM, Laheurte C, Jary M, Boullerot L, Asgarov K, Gravelin E, Bouard A, Rangan L, Dosset M, Borg C. Immunoregulation and clinical implications of ANGPT2/TIE2+ M-MDSC signature in non–small cell lung cancer. Cancer Immunol Res. 2020;8(2):268–79.

    CAS 
    Article 

    Google Scholar
     

  • Xie J-y, Wei J-x, Lv L-h, Han Q-f, Yang W-b, Li G-l, Wang P-x, Wu S-b, Duan J-x, Zhuo W-f. Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma. Cell Commun Signaling. 2020;18(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT–TIE2 pathway in malignancy. Nat Rev Cancer. 2010;10(8):575–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu J, Liu F, Xia Z, He K, Xiang G. MiR-3188 regulates the proliferation and apoptosis of hepatocellular carcinoma cells by targeting CXCL14. Biomark Med. 2021;15(17):1611–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu H-R, Huang R-Z, Yu X-N, Shi X, Bilegsaikhan E, Guo H-Y, Song G-Q, Weng S-Q, Dong L, Janssen HL. Microarray expression profiling of microRNAs reveals potential biomarkers for hepatocellular carcinoma. Tohoku J Exp Med. 2018;245(2):89–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou S-j, Deng Y-l, Liang H-f, Jaoude JC, Liu F-y. Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death Diff. 2017;24(9):1577–87.

    CAS 
    Article 

    Google Scholar
     

  • Wei L, Lee D, Law C-T, Zhang MS, Shen J, Chin DW-C, Zhang A, Tsang FH-C, Wong CL-S, Ng IO-L, et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun. 2019;10(1):4681.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 knockout strategies to ablate CCAT1 lncRNA gene in cancer cells. Biol Proced Online. 2018;20:21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shang A, Wang W, Gu C, Chen W, Lu W, Sun Z, Li D. Long non-coding RNA CCAT1 promotes colorectal cancer progression by regulating miR-181a-5p expression. Aging (Albany NY). 2020;12(9):8301–20.

    CAS 
    Article 

    Google Scholar
     

  • Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci U S A. 2019;116(31):15635–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ganguly K, Krishn SR, Rachagani S, Jahan R, Shah A, Nallasamy P, Rauth S, Atri P, Cox JL, Pothuraju R, et al. Secretory mucin 5AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Res. 2021;81(1):91–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Kato S, Hokari R, Crawley S, Gum J, Ahn DH, Kim JW, Kwon SW, Miura S, Basbaum CB, Kim YS. MUC5AC mucin gene regulation in pancreatic cancer cells. Int J Oncol. 2006;29(1):33–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaprio T, Hagström J, Mustonen H, Koskensalo S, Andersson LC, Haglund C. REG4 independently predicts better prognosis in non-mucinous colorectal cancer. PLoS ONE. 2014;9(10):e109600.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pothuraju R, Rachagani S, Krishn SR, Chaudhary S, Nimmakayala RK, Siddiqui JA, Ganguly K, Lakshmanan I, Cox JL, Mallya K, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19(1):37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Cathail SM, Wu CH, Thomas R, Hawkins MA, Maughan TS, Lewis A. NRF2 mediates therapeutic resistance to chemoradiation in colorectal cancer through a metabolic switch. Antioxidants (Basel) 2021;10(9):1380.

    CAS 
    Article 

    Google Scholar
     

  • Li T, Liu D, Lei X, Jiang Q. Par3L enhances colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway. Biochem Biophys Res Commun. 2017;482(4):1037–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu X, Zhang L, Li Y, Ma X, Dai W, Gao X, Rao X, Fu G, Wang R, Pan M, et al. Organoid modelling identifies that DACH1 functions as a tumour promoter in colorectal cancer by modulating BMP signalling. EBioMedicine. 2020;56:102800.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu H, Yu S, Yuan X, Xiong J, Kuang D, Pestell RG, Wu K. DACH1 suppresses breast cancer as a negative regulator of CD44. Sci Rep. 2017;7(1):4361.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kumagai T, Tomari K, Shimizu T, Takeda K. Alteration of gene expression in response to bone morphogenetic protein-2 in androgen-dependent human prostate cancer LNCaP cells. Int J Mol Med. 2006;17(2):285–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan W, Wu K, Herman JG, Brock MV, Fuks F, Yang L, Zhu H, Li Y, Yang Y, Guo M. Epigenetic regulation of DACH1, a novel Wnt signaling component in colorectal cancer. Epigenetics. 2013;8(12):1373–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramírez-Ramírez R, Gutiérrez-Angulo M, Peregrina-Sandoval J, Moreno-Ortiz JM, Franco-Topete RA, Cerda-Camacho FJ, Ayala-Madrigal ML. Somatic deletion of KDM1A/LSD1 gene is associated to advanced colorectal cancer stages. J Clin Pathol. 2020;73(2):107–11.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Miller SA, Policastro RA, Savant SS, Sriramkumar S, Ding N, Lu X, Mohammad HP, Cao S, Kalin JH, Cole PA, et al. Lysine-specific demethylase 1 mediates AKT activity and promotes epithelial-to-mesenchymal transition in PIK3CA-mutant colorectal cancer. Mol Cancer Res. 2020;18(2):264–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deb G, Wingelhofer B, Amaral FMR, Maiques-Diaz A, Chadwick JA, Spencer GJ, Williams EL, Leong HS, Maes T, Somervaille TCP. Pre-clinical activity of combined LSD1 and mTORC1 inhibition in MLL-translocated acute myeloid leukaemia. Leukemia. 2020;34(5):1266–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao J, Ren SR, Wang BR, Guo Q, Feng TT, Wang D, Liu JH, Tong JY, Shi LH. Knockout of LSD1 gene by CRISPR/Cas9 system significantly inhibited proliferation and expression of CD235a in K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2017;25(5):1327–33.

    PubMed 

    Google Scholar
     

  • Park DE, Cheng J, McGrath JP, Lim MY, Cushman C, Swanson SK, Tillgren ML, Paulo JA, Gokhale PC, Florens L, et al. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat Cell Biol. 2020;22(5):603–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim S, Bolatkan A, Kaneko S, Ikawa N, Asada K, Komatsu M, Hayami S, Ojima H, Abe N, Yamaue H, et al. Deregulation of the histone lysine-specific demethylase 1 is involved in human hepatocellular carcinoma. Biomolecules. 2019;9(12):810.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Faryal R. Role of miRNAs in breast cancer. Asian Pac J Cancer Prev. 2011;12:3175–80.

    PubMed 

    Google Scholar
     

  • Zare M, Bastami M, Solali S, Alivand MR. Aberrant miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications. J Cell Physiol. 2018;233(5):3729–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hannafon BN, Cai A, Calloway CL, Xu Y-F, Zhang R, Fung K-M, Ding W-Q. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer. 2019;19(1):1–12.

    CAS 
    Article 

    Google Scholar
     

  • Dai Y-H, Wang Y-F, Shen P-C, Lo C-H, Yang J-F, Lin C-S, Chao H-L, Huang W-Y. Gene-associated methylation status of ST14 as a predictor of survival and hormone receptor positivity in breast Cancer. BMC Cancer. 2021;21(1):1–14.

    Article 

    Google Scholar
     

  • Kim KY, Yoon M, Cho Y, Lee K-H, Park S, Lee S-r, Choi S-Y, Lee D, Yang C, Cho EH. Targeting metastatic breast cancer with peptide epitopes derived from autocatalytic loop of Prss14/ST14 membrane serine protease and with monoclonal antibodies. J Exp Clin Cancer Res. 2019;38(1):1–17.

    Article 

    Google Scholar
     

  • Zhang J, Song Y, Shi Q, Fu L. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis. Front Med. 2021;15(5):649–56.

    PubMed 
    Article 

    Google Scholar
     

  • Gonzalez-Salinas F, Rojo R, Martinez-Amador C, Herrera-Gamboa J, Trevino V. Transcriptomic and cellular analyses of CRISPR/Cas9-mediated edition of FASN show inhibition of aggressive characteristics in breast cancer cells. Biochem Biophys Res Commun. 2020;529(2):321–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lenoir WF, Morgado M, DeWeirdt PC, McLaughlin M, Griffith AL, Sangree AK, Feeley MN, Esmaeili Anvar N, Kim E, Bertolet LL. Discovery of putative tumor suppressors from CRISPR screens reveals rewired lipid metabolism in acute myeloid leukemia cells. Nat Commun. 2021;12(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Saha B, Mathur T, Tronolone JJ, Chokshi M, Lokhande GK, Selahi A, Gaharwar AK, Afshar-Kharghan V, Sood AK, Bao G. Human tumor microenvironment chip evaluates the consequences of platelet extravasation and combinatorial antitumor-antiplatelet therapy in ovarian cancer. Sci Adv. 2021;7(30):eabg5283.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Asghar S, Parvaiz F, Manzoor S. Multifaceted role of cancer educated platelets in survival of cancer cells. Thromb Res. 2019;177:42–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mammadova-Bach E, Gil-Pulido J, Sarukhanyan E, Burkard P, Shityakov S, Schonhart C, Stegner D, Remer K, Nurden P, Nurden AT. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell–derived galectin-3. Blood. 2020;135(14):1146–60.

    PubMed 

    Google Scholar
     

  • Volz J, Mammadova-Bach E, Gil-Pulido J, Nandigama R, Remer K, Sorokin L, Zernecke A, Abrams SI, Ergün S, Henke E. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood J Am Soc Hematol. 2019;133(25):2696–706.

    CAS 

    Google Scholar
     

  • Tu CF, Wu MY, Lin YC, Kannagi R, Yang RB. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res. 2017;19(1):111.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Li Y, Ma Y, Wu W. DCLK1 promotes malignant progression of breast cancer by regulating Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(21):9489–98.

    PubMed 

    Google Scholar
     

  • Liu H, Wen T, Zhou Y, Fan X, Du T, Gao T, Li L, Liu J, Yang L, Yao J. DCLK1 plays a metastatic-promoting role in human breast cancer cells. BioMed Res Int. 2019;2019:1.


    Google Scholar
     

  • Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 2005;6(10):757–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang M, Han J, Marcar L, Black J, Liu Q, Li X, Nagulapalli K, Sequist LV, Mak RH, Benes CH. Radiation resistance in KRAS-mutated lung cancer is enabled by stem-like properties mediated by an osteopontin–EGFR pathway. Cancer Res. 2017;77(8):2018–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Behbahani R, Danyaei A, Teimoori A, Neisi N, Tahmasbi M. Breast cancer radioresistance may be overcome by osteopontin gene knocking out with CRISPR/Cas9 technique. Cancer/Radiothérapie. 2021;25(3):222–8.

    CAS 
    Article 

    Google Scholar
     

  • Ehrke-Schulz E, Heinemann S, Schulte L, Schiwon M, Ehrhardt A. Adenoviral vectors armed with PAPILLOMAVIRUs oncogene specific CRISPR/Cas9 kill human-papillomavirus-induced cervical cancer cells. Cancers. 2020;12(7):1934.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park JS, Kim EJ, Lee JY, Sin HS, Namkoong SE, Um SJ. Functional inactivation of p73, a homolog of p53 tumor suppressor protein, by human papillomavirus E6 proteins. Int J Cancer. 2001;91(6):822–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding W, Hu Z, Zhu D, Jiang X, Yu L, Wang X, Zhang C, Wang L, Ji T, Li K. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res. 2014;20(24):6495–503.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shankar S, Prasad D, Sanawar R, Das AV, Pillai MR. TALEN based HPV-E7 editing triggers necrotic cell death in cervical cancer cells. Sci Rep. 2017;7(1):1–12.

    Article 
    CAS 

    Google Scholar
     

  • Herfs M, Herman L, Hubert P, Minner F, Arafa M, Roncarati P, Henrotin Y, Boniver J, Delvenne P. High expression of PGE2 enzymatic pathways in cervical (pre) neoplastic lesions and functional consequences for antigen-presenting cells. Cancer Immunol Immunother. 2009;58(4):603–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hojnik M, Frković Grazio S, Verdenik I, Rižner TL. AKR1B1 and AKR1B10 as prognostic biomarkers of endometrioid endometrial carcinomas. Cancers. 2021;13(14):3398.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lacroix Pépin N, Chapdelaine P, Rodriguez Y, Tremblay J-P, Fortier MA. Generation of human endometrial knockout cell lines with the CRISPR/Cas9 system confirms the prostaglandin F2α synthase activity of aldo-ketoreductase 1B1. Mol Hum Reprod. 2014;20(7):650–63.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ji J, Xu M-X, Qian T-Y, Zhu S-Z, Jiang F, Liu Z-X, Xu W-S, Zhou J, Xiao M-B. The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer. Mol Biol Rep. 2020;47(8):6091–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang J, Diao G, Zhang Q, Chen Y, Han J, Guo J. E6-regulated overproduction of prostaglandin E2 may inhibit migration of dendritic cells in human papillomavirus 16-positive cervical lesions. Int J Oncol. 2020;56(4):921–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo X-T, Leung TH-Y, Tang HW-M, Siu MK-Y, Wan PK-T, Chan KK-L, Cheung AN-Y, Ngan HY-S. CD109 mediates tumorigenicity and cancer aggressiveness via regulation of EGFR and STAT3 signalling in cervical squamous cell carcinoma. Br J Cancer. 2020;123(5):833–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang JM, Hashimoto M, Kawai K, Murakumo Y, Sato T, Ichihara M, Nakamura S, Takahashi M. CD109 expression in squamous cell carcinoma of the uterine cervix. Pathol Int. 2005;55(4):165–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zeinalzadeh E, Valerievich Yumashev A, Rahman HS, Marofi F, Shomali N, Kafil HS, Solali S, Sajjadi-Dokht M, Vakili-Samiani S, Jarahian M, et al. The role of janus kinase/STAT3 pathway in hematologic malignancies with an emphasis on epigenetics. Front Genet. 2021;12:703883.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Han Y-Q, Ming S-L, Wu H-T, Zeng L, Ba G, Li J, Lu W-F, Han J, Du Q-J, Sun M-M. Myostatin knockout induces apoptosis in human cervical cancer cells via elevated reactive oxygen species generation. Redox Biol. 2018;19:412–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med. 2012;14(6):405–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shen Y, Chen F, Liang Y. MicroRNA-133a inhibits the proliferation of non-small cell lung cancer by targeting YES1. Oncol Lett. 2019;18(6):6759–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu H, Lu Q, Lu Q, Shen X, Yu L. Matrine regulates proliferation, apoptosis, cell cycle, migration, and invasion of non-small cell lung cancer cells through the circFUT8/miR-944/YES1 axis. Cancer Manag Res. 2021;13:3429.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Garmendia I, Pajares MJ, Hermida-Prado F, Ajona D, Bértolo C, Sainz C, Lavín A, Remírez AB, Valencia K, Moreno H. YES1 drives lung cancer growth and progression and predicts sensitivity to dasatinib. Am J Respir Crit Care Med. 2019;200(7):888–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bilal E, Alexe G, Yao M, Cong L, Kulkarni A, Ginjala V, Toppmeyer D, Ganesan S, Bhanot G. Identification of the YES1 kinase as a therapeutic target in basal-like breast cancers. Genes Cancer. 2010;1(10):1063–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Y, Wang C, Ding J, Chen Y, Sun Y, Cheng Z. miR-133a targets YES1 to reduce cisplatin resistance in ovarian cancer by regulating cell autophagy. Cancer Cell Int. 2022;22(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Yang Y, Chai L, Bu H, Yang Y, Huang H, Ran J, Zhu Y, Li L, Chen F. FRK plays an oncogenic role in non-small cell lung cancer by enhancing the stemness phenotype via induction of metabolic reprogramming. Int J Cancer. 2020;146(1):208–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zang Q, Xu L, Li J, Jia H. GATA6 activated long non-coding RNA PCAT1 maintains stemness of non-small cell lung cancer by mediating FRK. J BUON. 2020;25(5):2371–81.

    PubMed 

    Google Scholar
     

  • Li L, Kou Y, Chen F, Sun X. Expression of p-FRK and its prognostic analysis in non-small cell lung cancer patients. Chin J Clin Exp Pathol. 2017:525–9.

  • Grunblatt E, Wu N, Zhang H, Liu X, Norton JP, Ohol Y, Leger P, Hiatt JB, Eastwood EC, Thomas R. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 2020;34(17–18):1210–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nau MM, Brooks BJ, Carney DN, Gazdar AF, Battey JF, Sausville EA, Minna JD. Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci. 1986;83(4):1092–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Czech-Sioli M, Siebels S, Radau S, Zahedi RP, Schmidt C, Dobner T, Grundhoff A, Fischer N. The ubiquitin-specific protease Usp7, a novel Merkel cell polyomavirus large T-antigen interaction partner, modulates viral DNA replication. J Virol. 2020;94(5):e01638-e1719.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhattacharya S, Chakraborty D, Basu M, Ghosh MK. Emerging insights into HAUSP (USP7) in physiology, cancer and other diseases. Signal Transduct Target Ther. 2018;3(1):1–12.

    CAS 
    Article 

    Google Scholar
     

  • Weinstock J, Wu J, Cao P, Kingsbury WD, McDermott JL, Kodrasov MP, McKelvey DM, Suresh Kumar K, Goldenberg SJ, Mattern MR. Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. ACS Med Chem Lett. 2012;3(10):789–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111(5):817–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lentsch E, Li L, Pfeffer S, Ekici AB, Taher L, Pilarsky C, Grützmann R. CRISPR/Cas9-mediated knock-out of krasG12D mutated pancreatic cancer cell lines. Int J Mol Sci. 2019;20(22):5706.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ischenko I, D’Amico S, Rao M, Li J, Hayman MJ, Powers S, Petrenko O, Reich NC. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat Commun. 2021;12(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol. 2021;14(1):1–25.

    Article 

    Google Scholar
     

  • Wei H, Li F, Fu P, Liu X. Effects of the silencing of hypoxia-inducible factor-1 alpha on metastasis of pancreatic cancer. Eur Rev Med Pharmacol Sci. 2013;17(4):436–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Xie H, Liu Y, Xia C, Cun X, Long Y, Chen X, Deng M, Guo R, Zhang Z. Knockdown of hypoxia-inducible factor-1 alpha by tumor targeted delivery of CRISPR/Cas9 system suppressed the metastasis of pancreatic cancer. J Control Release. 2019;304:204–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei X, Yang J, Adair SJ, Ozturk H, Kuscu C, Lee KY, Kane WJ, O’Hara PE, Liu D, Demirlenk YM. Targeted CRISPR screening identifies PRMT5 as synthetic lethality combinatorial target with gemcitabine in pancreatic cancer cells. Proc Natl Acad Sci. 2020;117(45):28068–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yasunaga K, Ito T, Miki M, Ueda K, Fujiyama T, Tachibana Y, Fujimori N, Kawabe K, Ogawa Y. Using CRISPR/Cas9 to knock out amylase in acinar cells decreases pancreatitis-induced autophagy. BioMed Res Int. 2018;2018:1.

    Article 
    CAS 

    Google Scholar
     

  • Hwang M, Jun DW, Kang EH, Yoon K-A, Cheong H, Kim Y-H, Lee C-H, Kim S. EI24, as a component of autophagy, is involved in pancreatic cell proliferation. Front Oncol. 2019;9:652.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zang Y, Zhu L, Li T, Wang Q, Li J, Qian Y, Wei L, Xie M, Tang W-H, Liu X. EI24 Suppresses tumorigenesis in pancreatic cancer via regulating c-Myc. Gastroenterol Res Pract. 2018;2018:1.

    Article 

    Google Scholar
     

  • Uzzo RG, Crispen PL, Golovine K, Makhov P, Horwitz EM, Kolenko VM. Diverse effects of zinc on NF-κB and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis. 2006;27(10):1980–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME. Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem. 1997;272(28):17485–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih W-J, Reuter VE, Scardino PT, Shen MM, Aronow BJ. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 2008;68(7):2132–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Riedel M, Berthelsen MF, Cai H, Haldrup J, Borre M, Paludan SR, Hager H, Vendelbo MH, Wagner EF, Bakiri L. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene. 2021;40(13):2437–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riedel M, Cai H, Stoltze IC, Vendelbo MH, Wagner EF, Bakiri L, Thomsen MK. Targeting AP-1 transcription factors by CRISPR in the prostate. Oncotarget. 2021;12(19):1956.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pi M, Quarles LD. GPRC6A regulates prostate cancer progression. Prostate. 2012;72(4):399–409.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ye R, Pi M, Cox JV, Nishimoto SK, Quarles LD. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J Exp Clin Cancer Res. 2017;36(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty G, Patail NK, Hirani R, Nandakumar S, Mazzu YZ, Yoshikawa Y, Atiq M, Jehane LE, Stopsack KH, Lee G-SM. Attenuation of SRC kinase activity augments PARP inhibitor–mediated synthetic lethality in BRCA2-altered prostate tumors. Clin Cancer Res. 2021;27(6):1792–806.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su B, Zhang L, Zhuang W, Zhang W, Chen X. Knockout of Akt1/2 suppresses the metastasis of human prostate cancer cells CWR22rv1 in vitro and in vivo. J Cell Mol Med. 2021;25(3):1546–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang XF, Chen JZ. Obesity, the PI3K/Akt signal pathway and colon cancer. Obes Rev. 2009;10(6):610–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song H, Xu Y, Xu T, Fan R, Jiang T, Cao M, Shi L, Song J. CircPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer development through sponging miR-671–5p. Biomed Pharmacother. 2020;126:109941.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo W-L, Davies M, Carey M, Hu Z, Guan Y, Sahin A. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pérez-Tenorio G, Stål O. Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer. 2002;86(4):540–5.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fang W, Huang Y, Gu W, Gan J, Wang W, Zhang S, Wang K, Zhan J, Yang Y, Huang Y. PI3K-AKT-mTOR pathway alterations in advanced NSCLC patients after progression on EGFR-TKI and clinical response to EGFR-TKI plus everolimus combination therapy. Transl Lung Cancer Res. 2020;9(4):1258.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ediriweera MK, Tennekoon KH, Samarakoon SR, editors. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Seminars in cancer biology; 2019: Elsevier.

  • Rahmani F, Ziaeemehr A, Shahidsales S, Gharib M, Khazaei M, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma. J Cell Physiol. 2020;235(5):4146–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kalli M, Minia A, Pliaka V, Fotis C, Alexopoulos LG, Stylianopoulos T. Solid stress-induced migration is mediated by GDF15 through Akt pathway activation in pancreatic cancer cells. Sci Rep. 2019;9(1):1–12.

    CAS 
    Article 

    Google Scholar
     

  • Nasrollahzadeh A, Momeny M, Fasehee H, Yaghmaie M, Bashash D, Hassani S, Mousavi SA, Ghaffari SH. Anti-proliferative activity of disulfiram through regulation of the AKT-FOXO axis: a proteomic study of molecular targets. Biochim Biophys Acta Mol Cell Res 2021;1868(10):119087.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu C-c, Chen C, Xu Z-q, Zhao J-k, Ou B-c, Sun J, Zheng M-h, Zong Y-p, Lu A-g. CCR6 promotes tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2018;1864(2):387–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nabipoorashrafi SA, Shomali N, Sadat-Hatamnezhad L, Mahami-Oskouei M, Mahmoudi J, Sandoghchian Shotorbani B, Akbari M, Xu H, Sandoghchian SS. miR-143 acts as an inhibitor of migration and proliferation as well as an inducer of apoptosis in melanoma cancer cells in vitro. IUBMB Life. 2020;72(9):2034–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin K, Shen S-H, Lu F, Zheng P, Wu S, Liao J, Jiang X, Zeng G, Wei D. CRISPR screening of E3 ubiquitin ligases reveals Ring Finger Protein 185 as a novel tumor suppressor in glioblastoma repressed by promoter hypermethylation and miR-587. J Transl Med. 2022;20(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Gruffaz M, Yuan H, Meng W, Liu H, Bae S, Kim J-S, Lu C, Huang Y, Gao S-J. CRISPR-Cas9 screening of Kaposi’s sarcoma-associated herpesvirus-transformed cells identifies XPO1 as a vulnerable target of cancer cells. MBio. 2019;10(3):e00866-e919.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y-Q, Pei J-H, Shi S-S, Guo X-s, Cui G-y, Li Y-F, Zhang H-P, Hu W-Q. CRISPR/Cas9-mediated knockout of the PDEF gene inhibits migration and invasion of human gastric cancer AGS cells. Biomed Pharmacother. 2019;111:76–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koepsell H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther. 2017;170:148–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu H, Ertay A, Peng P, Li J, Liu D, Xiong H, Zou Y, Qiu H, Hancock D, Yuan X. SGLT1 is required for the survival of triple-negative breast cancer cells via potentiation of EGFR activity. Mol Oncol. 2019;13(9):1874–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi M, Wang C, Ji J, Cai Q, Zhao Q, Xi W, Zhang J. CRISPR/Cas9-mediated knockout of SGLT1 inhibits proliferation and alters metabolism of gastric cancer cells. Cell Signalling. 2022;90:110192.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haghighi N, Doosti A, Kiani J. Evaluation of CRISPR/Cas9 system effects on knocking out NEAT1 gene in AGS gastric cancer cell line with therapeutic perspective. J Gastrointestinal Cancer. 2021:1–9.

  • Yu X, Li Z, Zheng H, Chan MT, Wu WKK. NEAT 1: a novel cancer-related long non-coding RNA. Cell Prolif. 2017;50(2):e12329.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Zhang Z, Xie B, Zhang H. Clinical significance of up-regulated lncRNA NEAT1 in prognosis of ovarian cancer. Eur Rev Med Pharmacol Sci. 2016;20(16):3373–7.

    PubMed 

    Google Scholar
     

  • Choi BD, Archer GE, Mitchell DA, Heimberger AB, McLendon RE, Bigner DD, Sampson JH. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol. 2009;19(4):713–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap EA, Feldman SA, Chinnasamy N, Kuan C-T, Song H. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10):1043–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang K, Yang C, Wang Q-x, Li Y-s, Fang C, Tan Y-l, Wei J-w, Wang Y-f, Li X, Zhou J-h. The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells. Cancer Lett. 2017;388:269–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Konda B, Black KL, Holler E, Ljubimova JY. Inhibition of tumor vascular protein laminin-411 by nanobioconjugate for glioma treatment. AACR; 2011.

  • Klymyshyn D, Galstyan A, Patil R, Ding H, Shatalova E, Wagner S, Black K, Ljubimov A, Holler E, Ljubimova J. Blockade of laminin-411-notch crosstalk as an effective therapy for glioblastoma treatment. AACR; 2019.

  • Ljubimova J, Inoue S, Bannykh S, Phuphanich S, Rudnick J, Ljubimov A, Black K. Prognostic significance of new glioma marker, laminin-411, and its inhibition by targeted nanobiopolymer in vivo. J Clin Oncol. 2011;29(15_suppl):e13008.

    Article 

    Google Scholar
     

  • Sun T, Patil R, Galstyan A, Klymyshyn D, Ding H, Chesnokova A, Cavenee WK, Furnari FB, Ljubimov VA, Shatalova ES. Blockade of a laminin-411–notch axis with CRISPR/Cas9 or a nanobioconjugate inhibits glioblastoma growth through tumor-microenvironment cross-talk. Cancer Res. 2019;79(6):1239–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38(4):473–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, Grez M, Kloess S, Arseniev L, Koehl U. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 2015;6:21.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Haji-Fatahaliha M, Hosseini M, Akbarian A, Sadreddini S, Jadidi-Niaragh F, Yousefi M. CAR-modified T-cell therapy for cancer: an updated review. Artif Cells Nanomed Biotechnol. 2016;44(6):1339–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han D, Xu Z, Zhuang Y, Ye Z, Qian Q. Current progress in CAR-T cell therapy for hematological malignancies. J Cancer. 2021;12(2):326–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qu J, Mei Q, Chen L, Zhou J. Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current status and future perspectives. Cancer Immunol Immunother. 2021;70(3):619–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G, Fusco N. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs. 2022:1–13.

  • Razeghian E, Nasution MK, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, Bokov DO, Suksatan W, Nakhaei P, Shariatzadeh S. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther. 2021;12(1):1–17.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova MV, Suksatan W, Chupradit S, Shomali N, Marofi F. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Res Ther. 2022;13(1):1–21.

    Article 
    CAS 

    Google Scholar
     

  • Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, et al. Correction to: any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res Ther. 2021;12(1):443.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Investig. 2016;126(8):3130–44.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marofi F, Rahman HS, Thangavelu L, Dorofeev A, Bayas-Morejón F, Shirafkan N, Shomali N, Chartrand MS, Jarahian M, Vahedi G. Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy. Stem Cell Res Ther. 2021;12(1):1–21.

    Article 
    CAS 

    Google Scholar
     

  • June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, Xia C, Wei X, Liu X, Wang H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017;27(1):154–7.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • McCreedy BJ, Senyukov VV, Nguyen KT. Off the shelf T cell therapies for hematologic malignancies. Best Pract Res Clin Haematol. 2018;31(2):166–75.

    PubMed 
    Article 

    Google Scholar
     

  • Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, Rettig MP, Wang B, Eissenberg LG, Ghobadi A. An, “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32(9):1970–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kagoya Y, Guo T, Yeung B, Saso K, Anczurowski M, Wang C-H, Murata K, Sugata K, Saijo H, Matsunaga Y. Genetic ablation of HLA class I, class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol Res. 2020;8(7):926–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu B, Zou Y, Zhang L, Tang J, Niedermann G, Firat E, Huang X, Zhu X. Nucleofection with plasmid DNA for CRISPR/Cas9-mediated inactivation of programmed cell death protein 1 in CD133-specific CAR T cells. Hum Gene Ther. 2019;30(4):446–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakazawa T, Natsume A, Nishimura F, Morimoto T, Matsuda R, Nakamura M, Yamada S, Nakagawa I, Motoyama Y, Park Y-S, et al. Effect of CRISPR/Cas9-mediated PD-1-disrupted primary human third-generation CAR-T cells targeting EGFRvIII on in vitro human glioblastoma cell growth. Cells. 2020;9(4):998.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Zhang X, Cheng C, Mu W, Liu X, Li N, Wei X, Liu X, Xia C, Wang H. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front Med. 2017;11(4):554–62.

    PubMed 
    Article 

    Google Scholar
     

  • Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei X-F, Han W, Wang H. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI insight 2020;5(4):e133977.

    PubMed Central 
    Article 

    Google Scholar
     

  • Welstead GG, Vong Q, Nye C, Hause R, Clouser C, Jones J, Burleigh S, Borges CM, Chin M, Marco E, editors. Improving efficacy of CAR T cells through CRISPR/Cas9 mediated knockout of TGFBR2. Molecular Therapy; 2018: CELL PRESS 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA.

  • Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, June CH. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26(7):1855–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, Hansen MJ, Jin F, Ayasoufi K, Hefazi M. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood J Am Soc Hematol. 2019;133(7):697–709.

    CAS 

    Google Scholar
     

  • Khadka RH, Sakemura R, Kenderian SS, Johnson AJ. Management of cytokine release syndrome: an update on emerging antigen-specific T cell engaging immunotherapies. Immunotherapy. 2019;11(10):851–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sterner RM, Cox MJ, Sakemura R, Kenderian SS. Using CRISPR/Cas9 to knock out GM-CSF in CAR-T cells. J Vis Exp. 2019(149).

  • Yi Y, Chai X, Zheng L, Zhang Y, Shen J, Hu B, Tao G. CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discovery. 2021;7(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • van Dongen JE, Berendsen JT, Steenbergen RD, Wolthuis RM, Eijkel JC, Segerink LI. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosensors Bioelectronics. 2020;166:112445.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J-S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24(1):132–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baghini SS, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to improve CRISPR/Cas9 knockout efficiency: special focus on human and animal cell. Front Bioeng Biotechnol. 2021;9.

  • Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci. 2020;7(6):1902312.

    CAS 
    Article 

    Google Scholar
     

  • Wolt JD, Wang K, Sashital D, Lawrence‐Dill CJ. Achieving plant CRISPR targeting that limits off‐target effects. Plant Genome. 2016;9(3):plantgenome2016.05.0047.

  • Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep. 2016;6(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X-H, Tee LY, Wang X-G, Huang Q-S, Yang S-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 2015;4:e264.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32(6):577–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32(6):569–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singh R, Kuscu C, Quinlan A, Qi Y, Adli M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res. 2015;43(18):e118.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. 2017;14(6):607–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Slipek NJ, Varshney J, Largaespada DA. CRISPR/Cas9-based positive screens for cancer-related traits. Methods Mol Biol. 2019;1907:137–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He C, Han S, Chang Y, Wu M, Zhao Y, Chen C, Chu X. CRISPR screen in cancer: status quo and future perspectives. Am J Cancer Res. 2021;11(4):1031–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adelmann CH, Wang T, Sabatini DM, Lander ES. Genome-wide CRISPR/Cas9 screening for identification of cancer genes in cell lines. Methods Mol Biol. 2019;1907:125–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Morsy SG, Tonne JM, Zhu Y, Lu B, Budzik K, Krempski JW, Ali SA, El-Feky MA, Ikeda Y. Divergent susceptibilities to AAV-SaCas9-gRNA vector-mediated genome-editing in a single-cell-derived cell population. BMC Res Notes. 2017;10(1):720.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koo T, Lu-Nguyen NB, Malerba A, Kim E, Kim D, Cappellari O, Cho HY, Dickson G, Popplewell L, Kim JS. Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9. Mol Ther. 2018;26(6):1529–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fujii W, Ito H, Kanke T, Ikeda A, Sugiura K, Naito K. Generation of genetically modified mice using SpCas9-NG engineered nuclease. Sci Rep. 2019;9(1):12878.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36(3):265–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, Matuszek Z, Newby GA, Rees HA, Liu DR. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 2020;38(4):471–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Res Int. 2014;2014:1.


    Google Scholar
     

  • Jubair L, Lam AK, Fallaha S, McMillan NA. CRISPR/Cas9-loaded stealth liposomes effectively cleared established HPV16-driven tumours in syngeneic mice. PLoS ONE. 2021;16(1):e0223288.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li X, Guo M, Hou B, Zheng B, Wang Z, Huang M, Xu Y, Chang J, Wang T. CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer. J Nanobiotechnol. 2021;19(1):1–13.

    Article 

    Google Scholar
     

  • Lin S-R, Yang H-C, Kuo Y-T, Liu C-J, Yang T-Y, Sung K-C, Lin Y-Y, Wang H-Y, Wang C-C, Shen Y-C. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 2014;3:e186.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhen S, Hua L, Takahashi Y, Narita S, Liu Y-H, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun. 2014;450(4):1422–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y, Wang Q, Guo Y, Dong Y, Tan X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017;27(3):440–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liao H-K, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang C-J. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun. 2015;6(1):1–10.

    CAS 

    Google Scholar
     

  • Yang Y-C, Chen Y-H, Kao J-H, Ching C, Liu I-J, Wang C-C, Tsai C-H, Wu F-Y, Liu C-J, Chen P-J. Permanent inactivation of HBV genomes by CRISPR/Cas9-mediated non-cleavage base editing. Mol Ther Nucleic Acids 2020;20:480–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao X, Jin Z, Tan X, Zhang C, Zou C, Zhang W, Ding J, Das BC, Severinov K, Hitzeroth II. Hyperbranched poly (β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer. J Control Release. 2020;321:654–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep. 2016;6(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS ONE. 2014;9(12):e115987.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Inturi R, Jemth P. CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology. 2021;562:92–102.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hsu DS, Kornepati AV, Glover W, Kennedy EM, Cullen BR. Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo. Futur Virol. 2018;13(07):475–82.

    CAS 
    Article 

    Google Scholar
     

  • Yu L, Hu Z, Gao C, Feng B, Wang L, Tian X, Ding W, Jin X, Ma D, Wang H. deletion of HPV18 E6 and E7 genes using dual sgRNA-directed CRISPR/Cas9 inhibits growth of cervical cancer cells. Int J Clin Exp Med. 2017;10(6):9206–13.


    Google Scholar
     

  • Kaushik A, Yndart A, Atluri V, Tiwari S, Tomitaka A, Gupta P, Jayant RD, Alvarez-Carbonell D, Khalili K, Nair M. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep. 2019;9(1):1–11.


    Google Scholar
     

  • Lao YH, Li M, Gao MA, Shao D, Chi CW, Huang D, Chakraborty S, Ho TC, Jiang W, Wang HX. HPV oncogene manipulation using nonvirally delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute. Adv Sci 2018;5(7):1700540.

    Article 
    CAS 

    Google Scholar
     

  • Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, Chang JC, Bao G, Muench MO, Yu J. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci. 2014;111(26):9591–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Efficient inhibition of HIV using CRISPR/Cas13d nuclease system. Viruses. 2021;13(9):1850.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu S, Wang Q, Yu X, Li Y, Guo Y, Liu Z, Sun F, Hou W, Li C, Wu L. HIV-1 inhibition in cells with CXCR4 mutant genome created by CRISPR-Cas9 and piggyBac recombinant technologies. Sci Rep. 2018;8(1):1–11.


    Google Scholar
     

  • Yoshiba T, Saga Y, Urabe M, Uchibor R, Matsubara S, Fujiwara H, Mizukami H. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett. 2019;17(2):2197–206.

    CAS 
    PubMed 

    Google Scholar
     

  • Wei L, Chiu DK, Tsang FH, Law CT, Cheng CL, Au SL, Lee JM, Wong CC, Ng IO, Wong CM. Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. J Hepatol. 2017;67(4):758–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song J, Zhang X, Ge Q, Yuan C, Chu L, Liang HF, Liao Z, Liu Q, Zhang Z, Zhang B. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J Cell Biochem. 2018;119(10):8419–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dai C, Zhang X, Xie D, Tang P, Li C, Zuo Y, Jiang B, Xue C. Targeting PP2A activates AMPK signaling to inhibit colorectal cancer cells. Oncotarget. 2017;8(56):95810–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hannafon BN, Cai A, Calloway CL, Xu Y-F, Zhang R, Fung K-M, Ding W-Q. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer. 2019;19(1):642.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Singhal J, Chikara S, Horne D, Awasthi S, Salgia R, Singhal SS. Targeting RLIP with CRISPR/Cas9 controls tumor growth. Carcinogenesis. 2021;42(1):48–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev. 2017;31(19):1939–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McDermott MS, Chumanevich AA, Lim CU, Liang J, Chen M, Altilia S, Oliver D, Rae JM, Shtutman M, Kiaris H, et al. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget. 2017;8(8):12558–75.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng JJ, He Y, Liu Y, Li FS, Cui Z, Du XM, Wang CP, Wu YM. Novel role of PAF1 in attenuating radiosensitivity in cervical cancer by inhibiting IER5 transcription. Radiat Oncol. 2020;15(1):131.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao G, Zhang L, Villarreal OD, He W, Su D, Bedford E, Moh P, Shen J, Shi X, Bedford MT, et al. PRMT1 loss sensitizes cells to PRMT5 inhibition. Nucleic Acids Res. 2019;47(10):5038–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang L, Chen T, Xiong L, Xu JH, Gong AY, Dai B, Wu G, Zhu K, Lu E, Mathy NW, et al. Knockdown of m6A methyltransferase METTL3 in gastric cancer cells results in suppression of cell proliferation. Oncol Lett. 2020;20(3):2191–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin J, Xie S, Sun Q, Huang Z, Chen K, Guo D, Rao X, Deng Y, Liu Y, Li S, et al. Upregulation of BCAM and its sense lncRNA BAN are associated with gastric cancer metastasis and poor prognosis. Mol Oncol. 2020;14(4):829–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Muniyan S, Haridas D, Chugh S, Rachagani S, Lakshmanan I, Gupta S, Seshacharyulu P, Smith LM, Ponnusamy MP, Batra SK. MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes Cancer. 2016;7(3–4):110–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen L, Alexe G, Dharia NV, Ross L, Iniguez AB, Conway AS, Wang EJ, Veschi V, Lam N, Qi J, et al. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest. 2018;128(1):446–62.

    PubMed 
    Article 

    Google Scholar
     

  • Rodriguez AC, Vahrenkamp JM, Berrett KC, Clark KA, Guillen KP, Scherer SD, Yang CH, Welm BE, Janát-Amsbury MM, Graves BJ, et al. ETV4 is necessary for estrogen signaling and growth in endometrial cancer cells. Cancer Res. 2020;80(6):1234–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bian X, Gao J, Luo F, Rui C, Zheng T, Wang D, Wang Y, Roberts TM, Liu P, Zhao JJ, et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene. 2018;37(3):341–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prattapong P, Ngernsombat C, Aimjongjun S, Janvilisri T. CRISPR/Cas9-mediated double knockout of SRPK1 and SRPK2 in a nasopharyngeal carcinoma cell line. Cancer Rep (Hoboken). 2020;3(2):e1224.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Li Z, Huo S, Wei Q, Ge L. Induction of G0/G1 phase arrest and apoptosis by CRISPR/Cas9-mediated knockout of CDK2 in A375 melanocytes. Mol Clin Oncol. 2020;12(1):9–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, Qian Q, Cao D, Yang J, Gui T, Shen K. Role of BMI1 in epithelial ovarian cancer: investigated via the CRISPR/Cas9 system and RNA sequencing. J Ovarian Res. 2018;11(1):31.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhen S, Hua L, Liu YH, Sun XM, Jiang MM, Chen W, Zhao L, Li X. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget. 2017;8(6):9634–46.

    PubMed 
    Article 

    Google Scholar
     

  • Huang LC, Tam KW, Liu WN, Lin CY, Hsu KW, Hsieh WS, Chi WM, Lee AW, Yang JM, Lin CL, et al. CRISPR/Cas9 genome editing of epidermal growth factor receptor sufficiently abolished oncogenicity in anaplastic thyroid cancer. Dis Markers. 2018;2018:3835783.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kailayangiri S, Altvater B, Lesch S, Balbach S, Göttlich C, Kühnemundt J, Mikesch JH, Schelhaas S, Jamitzky S, Meltzer J, et al. EZH2 inhibition in Ewing sarcoma upregulates G(D2) expression for targeting with gene-modified T cells. Mol Ther. 2019;27(5):933–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, Rettig MP, Wang B, Eissenberg LG, Ghobadi A, et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32(9):1970–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jung IY, Kim YY, Yu HS, Lee M, Kim S, Lee J. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 2018;78(16):4692–703.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dai X, Park JJ, Du Y, Kim HR, Wang G, Errami Y, Chen S. One-step generation of modular CAR-T cells with AAV-Cpf1. Nat Methods. 2019;16(3):247–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, Zhao Y. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8(10):17002–11.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi BD, Yu X, Castano AP, Darr H, Henderson DB, Bouffard AA, Larson RC, Scarfò I, Bailey SR, Gerhard GM, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019;7(1):304.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stenger D, Stief TA, Kaeuferle T, Willier S, Rataj F, Schober K, Vick B, Lotfi R, Wagner B, Grünewald TGP, et al. Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood. 2020;136(12):1407–18.

    PubMed 
    Article 

    Google Scholar
     

  • Giuffrida L, Sek K, Henderson MA, Lai J, Chen AXY, Meyran D, Todd KL, Petley EV, Mardiana S, Mølck C, et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat Commun. 2021;12(1):3236.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)