• Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed 
    Article 

    Google Scholar
     

  • Tonkens R. An overview of the drug development process. Phys Exec. 2005;31:48–52.


    Google Scholar
     

  • Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2016;17:2–12.

    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21(7):1189–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng F, Kovács IA, Barabási A-L. Network-based prediction of drug combinations. Nat Commun. 2019;10:1–11.

    Article 

    Google Scholar
     

  • Breitinger H-G. Drug synergy-mechanisms and methods of analysis. In: Acree B, editor. Toxicity and drug testing. InTech; 2012. p. 143–66.


    Google Scholar
     

  • Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, Dana Lee AK, Gomez-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Awad MM, Ramaswamy S, Mino-Kenudson M, Iafrate AJ, Benes CH, Engelman JA. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346:1480–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152:9–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. Deepsynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics. 2018;34:1538–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xia F, Shukla M, Brettin T, Garcia-Cardona C, Cohn J, Allen JE, Maslov S, Holbeck SL, Doroshow JH, Evrard YA, Stahlberg EA, Stevens RL. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform. 2018;19:71–9.

    Article 

    Google Scholar
     

  • Kim Y, Zheng S, Tang J, Zheng WJ, Li Z, Jiang X. Anticancer drug synergy prediction in understudied tissues using transfer learning. J Am Med Inform Assoc. 2021;28:42–51.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang T, Zhang L, Payne PRO, Li F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. In: Markowitz J, editor. Translational bioinformatics for therapeutic development. Springer; 2021. p. 223–38.

    Chapter 

    Google Scholar
     

  • Janizek JD, Celik S, Lee S-I. Explainable machine learning prediction of synergistic drug combinations for precision cancer medicine. bioRxiv. 2018.

  • Celebi R, Bear Don’t Walk O, Movva R, Alpsoy S, Dumontier M. In-silico prediction of synergistic anti-cancer drug combinations using multi-omics data. Sci Rep. 2019;9:1–10.

    CAS 
    Article 

    Google Scholar
     

  • Jeon M, Kim S, Park S, Lee H, Kang J. In silico drug combination discovery for personalized cancer therapy. BMC Syst Biol. 2018;12:59–67.

    Article 

    Google Scholar
     

  • Li J, Huo Y, Wu X, Liu E, Zeng Z, Tian Z, Fan K, Stover D, Cheng L, Li L. Essentiality and transcriptome-enriched pathway scores predict drug-combination synergy. Biology. 2020;9:278.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu F, Patumcharoenpol P, Zhang C, Chan YYJ, Meechai A, Vongsangnak W, Shen B. Biomedical text mining and its applications in cancer research. J Biomed Inform. 2013;46:200–11.

    PubMed 
    Article 

    Google Scholar
     

  • Holbeck SL, Camalier R, Crowell JA, Govindharajulu JP, Hollingshead M, Anderson LW, Polley E, Rubinstein L, Srivastava A, Wilsker D, Collins JM, Doroshow JH. The national cancer institute almanac: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Can Res. 2017;77:3564–76.

    CAS 
    Article 

    Google Scholar
     

  • Bliss CI. The toxicity of poisons applied jointly 1. Ann Appl Biol. 1939;26:585–615.

    CAS 
    Article 

    Google Scholar
     

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. Pubchem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:1388–95.

    Article 

    Google Scholar
     

  • Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29:25–38.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

  • Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.

    PubMed 
    Article 

    Google Scholar
     

  • Chen T, Guestrin CE. Xgboost: a scalable tree boosting system. In: Krishnapuram B, editor. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. p. 785–94.

  • Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. In: Fürnkranz J, editor. Machine learning. Springer; 2006. p. 3–42.


    Google Scholar
     

  • Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35:352–9.

    PubMed 
    Article 

    Google Scholar
     

  • Fan K, Cheng L, Li L. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects. Brief Bioinform. 2021;22:1–12.

    Article 

    Google Scholar
     

  • Luna A, Elloumi F, Varma S, Wang Y, Rajapakse VN, Aladjem MI, Robert J, Sander C, Pommier Y, Reinhold WC. Cellminer cross-database (CellMinerCDB) version 12: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res. 2021;49:1083–93.

    Article 

    Google Scholar
     

  • Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:901–6.

    Article 

    Google Scholar
     

  • Zagidullin B, Aldahdooh J, Zheng S, Wang W, Wang Y, Saad J, Malyutina A, Jafari M, Tanoli Z, Pessia A, Tang J. Drugcomb: an integrative cancer drug combination data portal. Nucleic Acids Res. 2019;47:43–51.

    Article 

    Google Scholar
     

  • Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Consortium A-SDCD, Jang IS, Ghazoui Z, Ahsen ME, Vogel R, Neto EC, Norman T, Tang EKY, Garnett MJ, Veroli GYD, Fawell S, Stolovitzky G, Guinney J, Dry JR, Saez-Rodriguez J. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications 2019;10:1–17.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)