• Warady BA, Schaefer F, Bagga A, Cano F, McCulloch M, Yap HK, Shroff R (2020) Prescribing peritoneal dialysis for high-quality care in children. Perit Dial Int 40:333–340

    PubMed 

    Google Scholar
     

  • van de Luijtgaarden MW, Jager KJ, Segelmark M, Pascual J, Collart F, Hemke AC, Remon C, Metcalfe W, Miguel A, Kramar R, Aasarod K, Abu Hanna A, Krediet RT, Schon S, Ravani P, Caskey FJ, Couchoud C, Palsson R, Wanner C, Finne P, Noordzij M (2016) Trends in dialysis modality choice and related patient survival in the ERA-EDTA Registry over a 20-year period. Nephrol Dial Transplant 31:120–128

    PubMed 

    Google Scholar
     

  • Manera KE, Johnson DW, Craig JC, Shen JI, Gutman T, Cho Y, Wang AY, Brown EA, Brunier G, Dong J, Dunning T, Mehrotra R, Naicker S, Pecoits-Filho R, Perl J, Wilkie M, Tong A (2020) Establishing a Core outcome set for peritoneal dialysis: report of the SONG-PD (Standardized Outcomes in Nephrology-Peritoneal Dialysis) Consensus Workshop. Am J Kidney Dis 75:404–412

    PubMed 

    Google Scholar
     

  • Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 106:100–105

    PubMed 

    Google Scholar
     

  • Schaefer B, Bartosova M, Macher-Goeppinger S, Ujszaszi A, Wallwiener M, Nyarangi-Dix J, Sallay P, Burkhardt D, Querfeld U, Pfeifle V, Lahrmann B, Schwenger V, Wuhl E, Holland-Cunz S, Schaefer F, Schmitt CP (2016) Quantitative histomorphometry of the healthy peritoneum. Sci Rep 6:21344

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y (2003) Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int 64:2238–2243

    CAS 
    PubMed 

    Google Scholar
     

  • Lowenstein J, Grantham JJ (2016) The rebirth of interest in renal tubular function. Am J Physiol Ren Physiol 310:F1351–F1355

    CAS 

    Google Scholar
     

  • Morelle J, Sow A, Hautem N, Bouzin C, Crott R, Devuyst O, Goffin E (2015) Interstitial Fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. J Am Soc Nephrol 26:2521–2533

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer B, Bartosova M, Macher-Goeppinger S, Sallay P, Voros P, Ranchin B, Vondrak K, Ariceta G, Zaloszyc A, Bayazit AK, Querfeld U, Cerkauskiene R, Testa S, Taylan C, VandeWalle J, Yap Y, Krmar RT, Buscher R, Muhlig AK, Drozdz D, Caliskan S, Lasitschka F, Fathallah-Shaykh S, Verrina E, Klaus G, Arbeiter K, Bhayadia R, Melk A, Romero P, Warady BA, Schaefer F, Ujszaszi A, Schmitt CP (2018) Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int 94:419–429

    CAS 
    PubMed 

    Google Scholar
     

  • Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, Jobs K, Grenda R, Wawer ZT, Rajszys P, Troger J, Mehls O, Schaefer F (2005) Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol 16:1494–1500

    PubMed 

    Google Scholar
     

  • Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992

    CAS 
    PubMed 

    Google Scholar
     

  • Vila Cuenca M, Hordijk PL, Vervloet MG (2020) Most exposed: the endothelium in chronic kidney disease. Nephrol Dial Transplant 35:1478–1487

    PubMed 

    Google Scholar
     

  • Freise C, Schaefer B, Bartosova M, Bayazit A, Bauer U, Pickardt T, Berger F, Rasmussen LM, Jensen PS, Laube G, Mencarelli F, Arbeiter K, Buscher R, Habbig S, Moller K, Kirchner M, Schaefer F, Schmitt CP, Querfeld U (2019) Arterial tissue transcriptional profiles associate with tissue remodeling and cardiovascular phenotype in children with end-stage kidney disease. Sci Rep 9:10316

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13:470–479

    PubMed 

    Google Scholar
     

  • Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS (2004) Long-term exposure to new peritoneal dialysis solutions: Effects on the peritoneal membrane. Kidney Int 66:1257–1265

    CAS 
    PubMed 

    Google Scholar
     

  • De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH (2003) Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 14:2109–2118

    PubMed 

    Google Scholar
     

  • González-Mateo GT, Aroeira LS, López-Cabrera M, Ruiz-Ortega M, Ortiz A, Selgas R (2012) Pharmacological modulation of peritoneal injury induced by dialysis fluids: is it an option? Nephrol Dial Transplant 27:478–481

    PubMed 

    Google Scholar
     

  • Balzer MS (2020) Molecular pathways in peritoneal fibrosis. Cell Signal 75:109778

    CAS 
    PubMed 

    Google Scholar
     

  • Vila Cuenca M, Keuning ED, Talhout W, Paauw NJ, van Ittersum FJ, Ter Wee PM, Beelen RHJ, Vervloet MG, Ferrantelli E (2018) Differences in peritoneal response after exposure to low-GDP bicarbonate/lactate-buffered dialysis solution compared to conventional dialysis solution in a uremic mouse model. Int Urol Nephrol 50:1151–1161

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartosova M, Schaefer B, Vondrak K, Sallay P, Taylan C, Cerkauskiene R, Dzierzega M, Milosevski-Lomic G, Büscher R, Zaloszyc A, Romero P, Lasitschka F, Warady BA, Schaefer F, Ujszaszi A, Schmitt CP (2019) Peritoneal dialysis vintage and glucose exposure but not peritonitis episodes drive peritoneal membrane transformation during the first years of PD. Front Physiol 10:356

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elphick EH, Teece L, Chess JA, Do JY, Kim YL, Lee HB, Davison SN, Topley N, Davies SJ, Lambie M (2018) Biocompatible solutions and long-term changes in peritoneal solute transport. Clin J Am Soc Nephrol 13:1526–1533

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, Jones B, Kulkarni H, Langham R, Ranganathan D, Schollum J, Suranyi MG, Tan SH, Voss D (2012) The effects of biocompatible compared with standard peritoneal dialysis solutions on peritonitis microbiology, treatment, and outcomes: the balANZ trial. Perit Dial Int 32:497–506

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, Jones B, Kulkarni H, Langham R, Ranganathan D, Schollum J, Suranyi M, Tan SH, Voss D (2012) Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol 23:1097–1107

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Diepen ATN, Coester AM, Janmaat CJ, Dekker FW, Struijk DG, Krediet RT (2020) Comparison of longitudinal membrane function in peritoneal dialysis patients according to dialysis fluid biocompatibility. Kidney Int Rep 5:2183–2194

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawanishi K, Honda K, Tsukada M, Oda H, Nitta K (2013) Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit Dial Int 33:242–251

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Peso G, Jimenez-Heffernan JA, Selgas R, Remon C, Ossorio M, Fernandez-Perpen A, Sanchez-Tomero JA, Cirugeda A, de Sousa E, Sandoval P, Diaz R, Lopez-Cabrera M, Bajo MA (2016) Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. a case-control study on human biopsies. Perit Dial Int 36:129–134

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartosova M, Zhang C, Schaefer B, Herzog R, Ridinger D, Damgov I, Levai E, Marinovic I, Eckert C, Romero P, Sallay P, Ujszaszi A, Unterwurzacher M, Wagner A, Hildenbrand G, Warady BA, Schaefer F, Zarogiannis SG, Kratochwill K, Schmitt CP (2021) Glucose derivative induced vasculopathy in children on chronic peritoneal dialysis. Circ Res 129(5):e102-e118

  • Schmitt CP, Nau B, Gemulla G, Bonzel KE, Holtta T, Testa S, Fischbach M, John U, Kemper MJ, Sander A, Arbeiter K, Schaefer F (2013) Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clin J Am Soc Nephrol 8:108–115

    CAS 
    PubMed 

    Google Scholar
     

  • Eich G, Bartosova M, Tischer C, Wlodkowski TT, Schaefer B, Pichl S, Kraewer N, Ranchin B, Vondrak K, Liebau MC, Hackert T, Schmitt CP (2017) Bicarbonate buffered peritoneal dialysis fluid upregulates angiopoietin-1 and promotes vessel maturation. PLoS One 12:e0189903

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goossen K, Becker M, Marshall MR, Bühn S, Breuing J, Firanek CA, Hess S, Nariai H, Sloand JA, Yao Q, Chang TI, Chen J, Paniagua R, Takatori Y, Wada J, Pieper D (2020) Icodextrin versus glucose solutions for the once-daily long dwell in peritoneal dialysis: an enriched systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 75:830–846

    CAS 
    PubMed 

    Google Scholar
     

  • Hamada C, Honda K, Kawanishi K, Nakamoto H, Ito Y, Sakurada T, Tanno Y, Mizumasa T, Miyazaki M, Moriishi M, Nakayama M (2015) Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. J Artif Organs 18:243–250

    CAS 
    PubMed 

    Google Scholar
     

  • Herzog R, Sacnun JM, González-Mateo G, Bartosova M, Bialas K, Wagner A, Unterwurzacher M, Sobieszek IJ, Daniel-Fischer L, Rusai K, Pascual-Antón L, Kaczirek K, Vychytil A, Schmitt CP, López-Cabrera M, Alper SL, Aufricht C, Kratochwill K (2021) Lithium preserves peritoneal membrane integrity by suppressing mesothelial cell αB-crystallin. Sci Transl Med 13(608):eaaz9705

  • Bonomini M, Zammit V, Divino-Filho JC, Davies SJ, Di Liberato L, Arduini A, Lambie M (2021) The osmo-metabolic approach: a novel and tantalizing glucose-sparing strategy in peritoneal dialysis. J Nephrol 34:503–519

    CAS 
    PubMed 

    Google Scholar
     

  • Iyasere O, Nagar R, Jesus-Silva JA, Pepereke S, MacConaill K, Eid A, Major RW (2021) The impact of amino acid dialysate on anthropometric measures in adult patients on peritoneal dialysis: a systematic review and meta-analysis. Perit Dial Int. https://doi.org/10.1177/08968608211035964

  • Schmitt CP, Bakkaloglu SA, Klaus G, Schroder C (2011) Fischbach M and European Pediatric Dialysis Working G. Solutions for peritoneal dialysis in children: recommendations by the European Pediatric Dialysis Working Group. Pediatr Nephrol 26:1137–1147

    PubMed 

    Google Scholar
     

  • Buchel J, Bartosova M, Eich G, Wittenberger T, Klein-Hitpass L, Steppan S, Hackert T, Schaefer F, Passlick-Deetjen J, Schmitt CP (2015) Interference of peritoneal dialysis fluids with cell cycle mechanisms. Perit Dial Int 35:259–274

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zareie M, van Lambalgen AA, ter Wee PM, Hekking LH, Keuning ED, Schadee-Eestermans IL, Faict D, Degréve B, Tangelder GJ, Beelen RH, van den Born J (2005) Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 25:58–67

    CAS 
    PubMed 

    Google Scholar
     

  • Tjiong HL, Zijlstra FJ, Rietveld T, Wattimena JL, Huijmans JG, Swart GR, Fieren MW (2007) Peritoneal protein losses and cytokine generation in automated peritoneal dialysis with combined amino acids and glucose solutions. Mediat Inflamm 2007:97272

    CAS 

    Google Scholar
     

  • Schmitt CP, von Heyl D, Rieger S, Arbeiter K, Bonzel KE, Fischbach M, Misselwitz J, Pieper AK, Schaefer F (2007) Reduced systemic advanced glycation end products in children receiving peritoneal dialysis with low glucose degradation product content. Nephrol Dial Transplant 22:2038–2044

    CAS 
    PubMed 

    Google Scholar
     

  • Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E (2003) Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int 63:298–305

    CAS 
    PubMed 

    Google Scholar
     

  • Chistiakov DA, Orekhov AN, Bobryshev YV (2015) Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol 6:365

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flavahan NA (2017) In Development-A new paradigm for understanding vascular disease. J Cardiovasc Pharmacol 69:248–263

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Ponce A, Citalan-Madrid AF, Velazquez-Avila M, Vargas-Robles H, Schnoor M (2015) The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 113:20–36

    PubMed 

    Google Scholar
     

  • Bartosova M, Schaefer B, Bermejo JL, Tarantino S, Lasitschka F, Macher-Goeppinger S, Sinn P, Warady BA, Zaloszyc A, Parapatics K, Majek P, Bennett KL, Oh J, Aufricht C, Schaefer F, Kratochwill K, Schmitt CP (2018) Complement activation in peritoneal dialysis-induced arteriolopathy. J Am Soc Nephrol 29:268–282

    CAS 
    PubMed 

    Google Scholar
     

  • Tawada M, Hamada C, Suzuki Y, Sakata F, Sun T, Kinashi H, Katsuno T, Takei Y, Maruyama S, Honda K, Mizuno M, Ito Y (2019) Effects of long-term treatment with low-GDP, pH-neutral solutions on peritoneal membranes in peritoneal dialysis patients. Clin Exp Nephrol 23:689–699

    CAS 
    PubMed 

    Google Scholar
     

  • Fang W, Mullan R, Shah H, Mujais S, Bargman JM, Oreopoulos DG (2008) Comparison between bicarbonate/lactate and standard lactate dialysis solution in peritoneal transport and ultrafiltration: a prospective, crossover single-dwell study. Peritoneal Dialysis Int 28:35–43

    CAS 

    Google Scholar
     

  • Betjes MG, Habib SM, Boeschoten EW, Hemke AC, Struijk DG, Westerhuis R, Abrahams AC, Korte MR (2017) Significant decreasing incidence of encapsulating peritoneal sclerosis in the dutch population of peritoneal dialysis patients. Peritoneal Dialysis Int 37:230–234


    Google Scholar
     

  • Nakayama M, Miyazaki M, Honda K, Kasai K, Tomo T, Nakamoto H, Kawanishi H (2014) Encapsulating peritoneal sclerosis in the era of a multi-disciplinary approach based on biocompatible solutions: the NEXT-PD study. Peritoneal Dialysis Int 34:766–774

    CAS 

    Google Scholar
     

  • Htay H, Johnson DW, Wiggins KJ, Badve SV, Craig JC, Strippoli GF, Cho Y (2018) Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev 10:Cd007554

    PubMed 

    Google Scholar
     

  • Shroff R, Smith C, Ranchin B, Bayazit AK, Stefanidis CJ, Askiti V, Azukaitis K, Canpolat N, Ağbaş A, Aitkenhead H, Anarat A, Aoun B, Aofolaju D, Bakkaloglu SA, Bhowruth D, Borzych-Dużałka D, Bulut IK, Büscher R, Deanfield J, Dempster C, Duzova A, Habbig S, Hayes W, Hegde S, Krid S, Licht C, Litwin M, Mayes M, Mir S, Nemec R, Obrycki L, Paglialonga F, Picca S, Samaille C, Shenoy M, Sinha MD, Spasojevic B, Stronach L, Vidal E, Vondrák K, Yilmaz A, Zaloszyc A, Fischbach M, Schmitt CP, Schaefer F (2019) Effects of hemodiafiltration versus conventional hemodialysis in children with ESKD: the HDF, Heart and Height Study. J Am Soc Nephrol 30:678–691

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canaud B, Blankestijn PJ, Grooteman MPC, Davenport A (2022) Why and how high volume hemodiafiltration may reduce cardiovascular mortality in stage 5 chronic kidney disease dialysis patients? A comprehensive literature review on mechanisms involved. Semin Dial 35:117–128

    PubMed 

    Google Scholar
     

  • Masola V, Bonomini M, Onisto M, Ferraro PM, Arduini A, Gambaro G (2021) Biological effects of XyloCore, a glucose sparing PD solution, on mesothelial cells: focus on mesothelial-mesenchymal transition, inflammation and angiogenesis. Nutrients 13(7):2282

  • Mihara T, Otsubo W, Horiguchi K, Mikawa S, Kaji N, Iino S, Ozaki H, Hori M (2017) The anti-inflammatory pathway regulated via nicotinic acetylcholine receptors in rat intestinal mesothelial cells. J Vet Med Sci 79:1795–1802

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaggiotti E, Arduini A, Bonomini M, Valentini G, Sacchi G, Sansoni E, Salvo D, Di Paolo N (2005) Prevention of peritoneal sclerosis: a new proposal to substitute glucose with carnitine dialysis solution (biocompatibility testing in vitro and in rabbits). Int J Artificial Organs 28:177–187

    CAS 

    Google Scholar
     

  • Bonomini M, Di Liberato L, Del Rosso G, Stingone A, Marinangeli G, Consoli A, Bertoli S, De Vecchi A, Bosi E, Russo R, Corciulo R, Gesualdo L, Giorgino F, Cerasoli P, Di Castelnuovo A, Monaco MP, Shockley T, Rossi C, Arduini A (2013) Effect of an L-carnitine-containing peritoneal dialysate on insulin sensitivity in patients treated with CAPD: a 4-month, prospective, multicenter randomized trial. Am J Kidney Dis 62:929–938

    CAS 
    PubMed 

    Google Scholar
     

  • Vychytil A, Herzog R, Probst P, Ribitsch W, Lhotta K, Machold-Fabrizii V, Wiesholzer M, Kaufmann M, Salmhofer H, Windpessl M, Rosenkranz AR, Oberbauer R, Konig F, Kratochwill K, Aufricht C (2018) A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid to assess impact on biomarkers of peritoneal health. Kidney Int 94:1227–1237

    CAS 
    PubMed 

    Google Scholar
     

  • Bartosova M, Herzog R, Ridinger D, Levai E, Jenei H, Zhang C, González Mateo GT, Marinovic I, Hackert T, Bestvater F, Hausmann M, López Cabrera M, Kratochwill K, Zarogiannis SG, Schmitt CP (2020) Alanyl-glutamine restores tight junction organization after disruption by a conventional peritoneal dialysis fluid. Biomolecules 10(8):1178

  • Herzog R, Bartosova M, Tarantino S, Wagner A, Unterwurzacher M, Sacnun JM, Lichtenauer AM, Kuster L, Schaefer B, Alper SL, Aufricht C, Schmitt CP, Kratochwill K (2020) Peritoneal dialysis fluid supplementation with alanyl-glutamine attenuates conventional dialysis fluid-mediated endothelial cell injury by restoring perturbed cytoprotective responses. Biomolecules 10(12):1678

  • Mehrotra R, Stanaway IB, Jarvik GP, Lambie M, Morelle J, Perl J, Himmelfarb J, Heimburger O, Johnson DW, Imam TH, Robinson B, Stenvinkel P, Devuyst O, Davies SJ (2021) A genome-wide association study suggests correlations of common genetic variants with peritoneal solute transfer rates in patients with kidney failure receiving peritoneal dialysis. Kidney Int 100:1101–1111

    CAS 
    PubMed 

    Google Scholar
     

  • Ni J, Verbavatz JM, Rippe A, Boisde I, Moulin P, Rippe B, Verkman AS, Devuyst O (2006) Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 69:1518–1525

    CAS 
    PubMed 

    Google Scholar
     

  • Morelle J, Marechal C, Yu Z, Debaix H, Corre T, Lambie M, Verduijn M, Dekker F, Bovy P, Evenepoel P, Bammens B, Selgas R, Bajo MA, Coester AM, Sow A, Hautem N, Struijk DG, Krediet RT, Balligand JL, Goffin E, Crott R, Ripoche P, Davies S, Devuyst O (2021) AQP1 promoter variant, water transport, and outcomes in peritoneal dialysis. N Engl J Med 385:1570–1580

    CAS 
    PubMed 

    Google Scholar
     

  • Balzer MS, Rong S, Nordlohne J, Zemtsovski JD, Schmidt S, Stapel B, Bartosova M, von Vietinghoff S, Haller H, Schmitt CP, Shushakova N (2020) SGLT2 inhibition by intraperitoneal dapagliflozin mitigates peritoneal fibrosis and ultrafiltration failure in a mouse model of chronic peritoneal exposure to high-glucose dialysate. Biomolecules 10(11):1573

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)