• Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spong CY. Defining “term” pregnancy: recommendations from the defining “term” pregnancy workgroup. JAMA. 2013;309(23):2445–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stewart DL, Barfield WD, Committee On F. Updates on an at-risk population: late-preterm and early-term infants. Pediatrics. 2019;144(5):e20192760.

    PubMed 
    Article 

    Google Scholar
     

  • Odibo IN, Bird TM, McKelvey SS, et al. Childhood respiratory morbidity after late preterm and early term delivery: a study of Medicaid patients in South Carolina. Paediatr Perinat Epidemiol. 2016;30(1):67–75.

    PubMed 
    Article 

    Google Scholar
     

  • Paz LD, Sheiner E, Wainstock T, et al. Evidence that children born at early term (37-38 6/7 weeks) are at increased risk for diabetes and obesity-related disorders. Am J Obstet Gynecol. 2017;217(5):588.


    Google Scholar
     

  • Dong Y, Chen SJ, Yu JL. A systematic review and meta-analysis of long-term development of early term infants. Neonatology. 2012;102(3):212–21.

    PubMed 
    Article 

    Google Scholar
     

  • Crump C, Sundquist K, Winkleby MA, et al. Early-term birth (37-38 weeks) and mortality in young adulthood. Epidemiology. 2013;24(2):270–6.

    PubMed 
    Article 

    Google Scholar
     

  • Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314(10):1039–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huff K, Rose RS, Engle WA. Late preterm infants: morbidities, mortality, and management recommendations. Pediatr Clin N Am. 2019;66(2):387–402.

    Article 

    Google Scholar
     

  • Woythaler M. Neurodevelopmental outcomes of the late preterm infant. Semin Fetal Neonatal Med. 2019;24(1):54–9.

    PubMed 
    Article 

    Google Scholar
     

  • Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019;7(1):e37–46.

    PubMed 
    Article 

    Google Scholar
     

  • Delnord M, Zeitlin J. Epidemiology of late preterm and early term births – an international perspective. Semin Fetal Neonatal Med. 2019;24(1):3–10.

    PubMed 
    Article 

    Google Scholar
     

  • Woythaler MA, McCormick MC, Smith VC. Late preterm infants have worse 24-month neurodevelopmental outcomes than term infants. Pediatrics. 2011;127(3):e622–9.

    PubMed 
    Article 

    Google Scholar
     

  • Cheong JL, Doyle LW, Burnett AC, et al. Association between moderate and late preterm birth and neurodevelopment and social-emotional development at age 2 years. JAMA Pediatr. 2017;171(4):e164805.

    PubMed 
    Article 

    Google Scholar
     

  • McGowan EC, Vohr BR. Neurodevelopmental follow-up of preterm infants: what is new? Pediatr Clin N Am. 2019;66(2):509–23.

    Article 

    Google Scholar
     

  • Stene-Larsen K, Brandlistuen RE, Lang AM, et al. Communication impairments in early term and late preterm children: a prospective cohort study following children to age 36 months. J Pediatr. 2014;165(6):1123–8.

    PubMed 
    Article 

    Google Scholar
     

  • Wu M, Wang L, Liu Y, et al. Association between early-term birth and delayed neurodevelopment at the age of 2 years: results from a cohort study in China. Eur J Pediatr. 2021;180(12):3509–17.

    PubMed 
    Article 

    Google Scholar
     

  • Vohr B. Long-term outcomes of moderately preterm, late preterm, and early term infants. Clin Perinatol. 2013;40(4):739–51.

    PubMed 
    Article 

    Google Scholar
     

  • Kajantie E, Strang-Karlsson S, Evensen KAI, et al. Adult outcomes of being born late preterm or early term – what do we know? Semin Fetal Neonatal Med. 2019;24(1):66–83.

    PubMed 
    Article 

    Google Scholar
     

  • You J, Shamsi BH, Hao MC, et al. A study on the neurodevelopment outcomes of late preterm infants. BMC Neurol. 2019;19(1):108.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Doll E, Gesell A, Amatruda CS. Developmental diagnosis: Normal and abnormal child development—clinical methods and pediatric applications. Ann Intern Med. 1948;28:195.


    Google Scholar
     

  • Xiuling Z, L J. The revise of Gesell developmental scale on ~ 6 years of age in Beijing. Chinese. J Clin Psychol. 1994;3:03.


    Google Scholar
     

  • Zhang M, Gazimbi MM, Chen Z, et al. Association between birth weight and neurodevelopment at age 1-6 months: results from the Wuhan healthy baby cohort. BMJ Open. 2020;10(1):e031916.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang YF. Rating scales for Children’s developmental behavior and mental health. 1st ed. Peking: People’s Medical Publishing House; 2016.


    Google Scholar
     

  • Sandman CA, Davis EP, Buss C, et al. Exposure to prenatal psychobiological stress exerts programming influences on the mother and her fetus. Neuroendocrinology. 2012;95(1):7–21.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Espel EV, Glynn LM, Sandman CA, et al. Longer gestation among children born full term influences cognitive and motor development. PLoS One. 2014;9(11):e113758.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shah P, Kaciroti N, Richards B, et al. Developmental outcomes of late preterm infants from infancy to kindergarten. Pediatrics. 2016;138(2):e20153496.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kelly CE, Thompson DK, Spittle AJ, et al. Regional brain volumes, microstructure and neurodevelopment in moderate-late preterm children. Arch Dis Child Fetal Neonatal Ed. 2020;105(6):593–9.

    PubMed 
    Article 

    Google Scholar
     

  • Walsh JM, Doyle LW, Anderson PJ, et al. Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age. Radiology. 2014;273(1):232–40.

    PubMed 
    Article 

    Google Scholar
     

  • Oros D, Altermir I, Elia N, et al. Pathways of neuronal and cognitive development in children born small-for-gestational age or late preterm. Ultrasound Obstet Gynecol. 2014;43(1):41–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hüppi PS, Warfield S, Kikinis R, et al. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol. 1998;43(2):224–35.

    PubMed 
    Article 

    Google Scholar
     

  • El Marroun H, Zou R, Leeuwenburg MF, et al. Association of Gestational age at birth with brain Morphometry. JAMA Pediatr. 2020;174(12):1149–58.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rose O, Blanco E, Martinez SM, et al. Developmental scores at 1 year with increasing gestational age, 37-41 weeks. Pediatrics. 2013;131(5):e1475–81.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gill JV, Boyle EM. Outcomes of infants born near term. Arch Dis Child. 2017;102(2):194–8.

    PubMed 
    Article 

    Google Scholar
     

  • Barkovich MJ, Barkovich AJ. MR imaging of Normal brain development. Neuroimaging Clin N Am. 2019;29(3):325–37.

    PubMed 
    Article 

    Google Scholar
     

  • Zerbeto AB, Cortelo FM, EB CF. Association between gestational age and birth weight on the language development of Brazilian children: a systematic review. J Pediatr. 2015;91(4):326–32.

    Article 

    Google Scholar
     

  • Yim G, Minatoya M, Kioumourtzoglou MA, et al. The associations of prenatal exposure to dioxins and polychlorinated biphenyls with neurodevelopment at 6 months of age: multi-pollutant approaches. Environ Res. 2022;209:112757.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shekhawat DS, Janu VC, Singh P, et al. Association of newborn blood lead concentration with neurodevelopment outcome in early infancy. J Trace Elem Med Biol. 2021;68:126853.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanefuji M, Sonoda Y, Ito Y, et al. Physical growth and neurodevelopment during the first year of life: a cohort study of the Japan environment and Children’s study. BMC Pediatr. 2021;21(1):360.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu TY, Chang JH, Peng CC, et al. Predictive validity of the Bayley-III cognitive scores at 6 months for cognitive outcomes at 24 months in very-low-birth-weight infants. Front Pediatr. 2021;9:638449.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Massey SH, Mroczek DK, Reiss D, et al. Additive drug-specific and sex-specific risks associated with co-use of marijuana and tobacco during pregnancy: evidence from 3 recent developmental cohorts (2003-2015). Neurotoxicol Teratol. 2018;68:97–106.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bale TL. The placenta and neurodevelopment: sex differences in prenatal vulnerability. Dialogues Clin Neurosci. 2016;18(4):459–64.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benevenuto SG, Domenico MD, Martins MA, et al. Recreational use of marijuana during pregnancy and negative gestational and fetal outcomes: an experimental study in mice. Toxicology. 2017;376:94–101.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)