• Laugier C, Sevin C, Ménard S, Maillard K. Prevalence of Parascaris equorum infection in foals on French stud farms and first report of ivermectin-resistant P. equorum populations in France. Vet Parasitol. 2012;188:185–9.

    PubMed 
    Article 

    Google Scholar
     

  • Relf VE, Morgan ER, Hodgkinson JE, Matthews JB. Helminth egg excretion with regard to age, gender and management practices on UK Thoroughbred studs. Parasitology. 2013;140:641–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Armstrong SK, Woodgate RG, Gough S, Heller J, Sangster NC, Hughes KJ. The efficacy of ivermectin, pyrantel and fenbendazole against Parascaris equorum infection in foals on farms in Australia. Vet Parasitol. 2014;205:575–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alanazi AD, Mukbel RM, Alyousif MS, AlShehri ZS, Alanazi IO, Al-Mohammed HI. A field study on the anthelmintic resistance of Parascaris spp. in Arab foals in the Riyadh region, Saudi Arabia. Vet Q. 2017;37:200–5.

    PubMed 
    Article 

    Google Scholar
     

  • Cribb NC, Cote NM, Bouré LP, Peregrine AS. Acute small intestinal obstruction associated with Parascaris equorum infection in young horses: 25 cases (1985–2004). N Z Vet J. 2006;54:338–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clayton HM, Duncan JL. The migration and development of Parascaris equorum in the horse. Int J Parasitol. 1979;9:285–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clayton HM. Ascarids: recent advances. Vet Clin N Am Equine Pract. 1986;2:313–28.

    CAS 
    Article 

    Google Scholar
     

  • Nielsen MK. Evidence-based considerations for control of Parascaris spp. infections in horses. Equine Vet Educ. 2016;28:224–31.

    Article 

    Google Scholar
     

  • Shoop WL, Mrozik H, Fisher MH. Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol. 1995;59:139–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wolstenholme AJ, Rogers AT. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology. 2005;131:S85–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reinemeyer CR. Diagnosis and control of anthelmintic-resistant Parascaris equorum. Parasites Vectors. 2009;2:S8.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cooper LG, Caffe G, Cerutti J, Nielsen MK, Anziani OS. Reduced efficacy of ivermectin and moxidectin against Parascaris spp. in foals from Argentina. Vet Parasitol Reg Stud Rep. 2020;20: 100388.


    Google Scholar
     

  • Lindgren K, Ljungvall O, Nilsson O, Ljungström BL, Lindahl C, Höglund J. Parascaris equorum in foals and in their environment on a Swedish stud farm, with notes on treatment failure of ivermectin. Vet Parasitol. 2008;151:337–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martin F, Svansson V, Eydal M, Oddsdóttir C, Ernback M, Persson I, et al. First report of resistance to ivermectin in Parascaris univalens in Iceland. J Parasitol. 2021;107:16–22.

    PubMed 
    Article 

    Google Scholar
     

  • Whittaker JH, Carlson SA, Jones DE, Brewer MT. Molecular mechanisms for anthelmintic resistance in strongyle nematode parasites of veterinary importance. J Vet Pharmacol Ther. 2017;40:105–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • James CE, Hudson AL, Davey MW. Drug resistance mechanisms in helminths: is it survival of the fittest? Trends Parasitol. 2009;25:328–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Njue AI, Hayashi J, Kinne L, Feng XP, Prichard RK. Mutations in the extracellular domains of glutamate-gated chloride channel alpha3 and beta subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. J Neurochem. 2004;89:1137–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol Pharmacol. 2009;75:1347–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • El-Abdellati A, De Graef J, Van Zeveren A, Donnan A, Skuce P, Walsh T, et al. Altered avr-14B gene transcription patterns in ivermectin-resistant isolates of the cattle parasites, Cooperia oncophora and Ostertagia ostertagi. Int J Parasitol. 2011;41:951–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Williamson SM, Storey B, Howell S, Harper KM, Kaplan RM, Wolstenholme AJ. Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Mol Biochem Parasitol. 2011;180:99–105.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dicker AJ, Nisbet AJ, Skuce PJ. Gene expression changes in a P-glycoprotein (Tci-pgp-9) putatively associated with ivermectin resistance in Teladorsagia circumcincta. Int J Parasitol. 2011;41:935–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raza A, Kopp SR, Bagnall NH, Jabbar A, Kotze AC. Effects of in vitro exposure to ivermectin and levamisole on the expression patterns of ABC transporters in Haemonchus contortus larvae. Int J Parasitol Drugs Drug Resist. 2016;6:103–15.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu M, Molento M, Blackhall W, Ribeiro P, Beech R, Prichard R. Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Mol Biochem Parasitol. 1998;91:327–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matoušková P, Vokřál I, Lamka J, Skálová L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–91.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yilmaz E, Ramünke S, Demeler J, Krücken J. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resistant isolate. Int J Parasitol Drugs Drug Resist. 2017;7:362–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matoušková P, Lecová L, Laing R, Dimunová D, Vogel H, Raisová Stuchlíková L, et al. UDP-glycosyltransferase family in Haemonchus contortus: phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. Int J Parasitol Drugs Drug Resist. 2018;8:420–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Janssen IJ, Krücken J, Demeler J, Basiaga M, Kornaś S, von Samson-Himmelstjerna G. Genetic variants and increased expression of Parascaris equorum P-glycoprotein-11 in populations with decreased ivermectin susceptibility. PLoS ONE. 2013;8: e61635.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin F, Dube F, Karlsson Lindsjö O, Eydal M, Höglund J, Bergström TF, et al. Transcriptional responses in Parascaris univalens after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole. Parasites Vectors. 2020;13:342.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scare JA, Dini P, Norris JK, Steuer AE, Scoggin K, Gravatte HS, et al. Ascarids exposed: a method for in vitro drug exposure and gene expression analysis of anthelmintic naïve Parascaris spp. Parasitology. 2020;147:659–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martin F, Eydal M, Höglund J, Tydén E. Constitutive and differential expression of transport protein genes in Parascaris univalens larvae and adult tissues after in vitro exposure to anthelmintic drugs. Vet Parasitol. 2021;298: 109535.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gibson SB, Harper CS, Lackner LL, Andersen EC. The Caenorhabditis elegans and Haemonchus contortus beta-tubulin genes cannot substitute for loss of the Saccharomyces cerevisiae beta-tubulin gene. MicroPubl Biol. 2021. https://doi.org/10.17912/micropub.biology.000411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ondua M, Mfotie Njoya E, Abdalla MA, McGaw LJ. Investigation of anthelmintic activity of the acetone extract and constituents of Typha capensis against animal parasitic Haemonchus contortus and free-living Caenorhabditis elegans. Parasitol Res. 2021;120:3437–49.

    PubMed 
    Article 

    Google Scholar
     

  • Yates DM, Portillo V, Wolstenholme AJ. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol. 2003;33:1183–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stasiuk SJ, MacNevin G, Workentine ML, Gray D, Redman E, Bartley D, et al. Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. Int J Parasitol Drugs Drug Resist. 2019;11:13–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gerhard AP, Krücken J, Neveu C, Charvet CL, Harmache A, von Samson-Himmelstjerna G. Pharyngeal pumping and tissue-specific transgenic P-glycoprotein expression influence macrocyclic lactone susceptibility in Caenorhabditis elegans. Pharmaceuticals. 2021;14:153.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Janssen IJ, Krücken J, Demeler J, von Samson-Himmelstjerna G. Transgenically expressed Parascaris P-glycoprotein-11 can modulate ivermectin susceptibility in Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist. 2015;5:44–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH, Schaeffer JM, et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature. 1994;371:707–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dent JA, Smith MM, Vassilatis DK, Avery L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2000;97:2674–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gilleard JS. The use of Caenorhabditis elegans in parasitic nematode research. Parasitology. 2004;128:S49–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.


    Google Scholar
     

  • Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011;12:35.

    Article 

    Google Scholar
     

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stiernagle T. Maintenance of C. elegans. WormBook. 2006. p. 1–11.

  • Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp. 2012;64: e4019.


    Google Scholar
     

  • Johnson JR, Ferdek P, Lian LY, Barclay JW, Burgoyne RD, Morgan A. Binding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in Caenorhabditis elegans. Biochem J. 2009;418:73–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen N, Harris TW, Antoshechkin I, Bastiani C, Bieri T, Blasiar D, et al. WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. Nucleic Acids Res. 2005;33:D383–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martin F, Höglund J, Bergström TF, Karlsson Lindsjö O, Tydén E. Resistance to pyrantel embonate and efficacy of fenbendazole in Parascaris univalens on Swedish stud farms. Vet Parasitol. 2018;264:69–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ballesteros C, Tritten L, O’Neill M, Burkman E, Zaky WI, Xia J, et al. The effects of ivermectin on Brugia malayi females in vitro: a transcriptomic approach. PLoS Negl Trop Dis. 2016;10: e0004929.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 2016;22:839–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research—old model, new perspectives. Int J Parasitol Drugs Drug Resist. 2020;14:237–48.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holden-Dye L, Walker RJ. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans. WormBook. 2014. p. 1–29.

  • Salinas G, Risi G. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists. Parasitology. 2018;145:979–87.

    PubMed 
    Article 

    Google Scholar
     

  • Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, et al. Ascaris suum draft genome. Nature. 2011;479:529–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, et al. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392:71–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • International Helminth Genomes Consortium. Comparative genomics of the major parasitic worms. Nat Genet. 2019;51:163–74.

    CAS 
    Article 

    Google Scholar
     

  • Viney M. The genomic basis of nematode parasitism. Brief Funct Genom. 2018;17:8–14.

    CAS 
    Article 

    Google Scholar
     

  • Wang J, Gao S, Mostovoy Y, Kang Y, Zagoskin M, Sun Y, et al. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res. 2017;27:2001–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feng XP, Hayashi J, Beech RN, Prichard RK. Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin. J Neurochem. 2002;83:870–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996;60:575–608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci. 2013;38:151–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arena JP, Liu KK, Paress PS, Frazier EG, Cully DF, Mrozik H, et al. The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J Parasitol. 1995;81:286–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Avery L, Horvitz HR. Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool. 1990;253:263–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Geary TG, Sims SM, Thomas EM, Vanover L, Davis JP, Winterrowd CA, et al. Haemonchus contortus: ivermectin-induced paralysis of the pharynx. Exp Parasitol. 1993;77:88–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gerhard AP, Krücken J, Heitlinger E, Janssen IJI, Basiaga M, Kornaś S, et al. The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Sci Rep. 2020;10:13586.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Graef J, Demeler J, Skuce P, Mitreva M, Von Samson-Himmelstjerna G, Vercruysse J, et al. Gene expression analysis of ABC transporters in a resistant Cooperia oncophora isolate following in vivo and in vitro exposure to macrocyclic lactones. Parasitology. 2013;140:499–508.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Cvilink V, Szotáková B, Krízová V, Lamka J, Skálová L. Phase I biotransformation of albendazole in lancet fluke (Dicrocoelium dendriticum). Res Vet Sci. 2009;86:49–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cvilink V, Szotáková B, Vokrál I, Bártíková H, Lamka J, Skálová L. Liquid chromatography/mass spectrometric identification of benzimidazole anthelminthics metabolites formed ex vivo by Dicrocoelium dendriticum. Rapid Commun Mass Spectrom. 2009;23:2679–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prchal L, Bártíková H, Bečanová A, Jirásko R, Vokřál I, Stuchlíková L, et al. Biotransformation of anthelmintics and the activity of drug-metabolizing enzymes in the tapeworm Moniezia expansa. Parasitology. 2015;142:648–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solana HD, Rodriguez JA, Lanusse CE. Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Parasitol Res. 2001;87:275–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stuchlíková LR, Matoušková P, Vokřál I, Lamka J, Szotáková B, Sečkařová A, et al. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int J Parasitol Drugs Drug Resist. 2018;8:50–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laing ST, Ivens A, Butler V, Ravikumar SP, Laing R, Woods DJ, et al. The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake. PLoS ONE. 2012;7: e31367.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jones LM, Rayson SJ, Flemming AJ, Urwin PE. Adaptive and specialised transcriptional responses to xenobiotic stress in Caenorhabditis elegans are regulated by nuclear hormone receptors. PLoS ONE. 2013;8: e69956.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laing ST, Ivens A, Laing R, Ravikumar S, Butler V, Woods DJ, et al. Characterization of the xenobiotic response of Caenorhabditis elegans to the anthelmintic drug albendazole and the identification of novel drug glucoside metabolites. Biochem J. 2010;432:505–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ménez C, Alberich M, Courtot E, Guegnard F, Blanchard A, Aguilaniu H, et al. The transcription factor NHR-8: a new target to increase ivermectin efficacy in nematodes. PLoS Pathog. 2019;15: e1007598.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)