• Ting H, Xiao MA, Xin-Quan Z, Xin-Yue Z, Rui-Zhen Z, Kai-Xin FU. Comparation of SSR molecular markers analysis of annual ryegrass varieties in DUS testing. Scientia Agricultura Sinica. 2015;48(2):381–9.


    Google Scholar
     

  • Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium Multiflorum Lam.). Theor Appl Genet. 2006;113(2):270–9. https://doi.org/10.1007/s00122-006-0292-4.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Juillet. Grasses and legumes – plantes herbagères et légumineuses. 2018. p. G27–35.


    Google Scholar
     

  • Julier B, Barre P, Lambroni P, Delaunay S, Thomasset M, Lafaillette F, Gensollen V. Use of GBS markers to distinguish among lucerne varieties, with comparison to morphological traits. Mol Breeding. 2018;38(11):1–12. https://doi.org/10.1007/s11032-018-0891-1.

    CAS 
    Article 

    Google Scholar
     

  • Wang J, Cogan NOI, Forster JW. Prospects for applications of genomic tools in registration testing and seed certification of ryegrass varieties. Plant Breed. 2016;135:405–12. https://doi.org/10.1111/pbr.12388.

    CAS 
    Article 

    Google Scholar
     

  • Zhang S, Li B, Chen Y, Shaibu AS, Zheng H, Sun J. Molecular-assisted distinctness and uniformity testing using SLAF-sequencing approach in soybean. Genes. 2020;11:175. https://doi.org/10.3390/genes11020175.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Gilliland TJ, Annicchiarico P, Julier B, Ghesquière M. A proposal for enhanced EN herbage VCU and DUS testing procedures. Grass Forage Sci. 2020;75(3):227–41. https://doi.org/10.1111/gfs.12492.

    Article 

    Google Scholar
     

  • KöLliker R, Boller B, Widmer F. Marker assisted polycross breeding to increase diversity and yield in perennial ryegrass (Lolium perennial L.). Euphytica. 2005;146:55–65. https://doi.org/10.1007/s10681-005-6036-8.

    CAS 
    Article 

    Google Scholar
     

  • Yang JI, Zhang XQ, Xiao MA, Chu XJ, Fang LI, Meng Y. Genetic analysis of Lolium multiflorum hybrids and their progenies detected using SRAP markers. Acta Pratacul Sin. 2009;4(18):260–5.


    Google Scholar
     

  • Knorst V, Byrne S, Yates S, Asp T, Widmer F, Studer B, Kölliker R. Pooled DNA sequencing to identify SNPs associated with a major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet. 2019;132:947–58. https://doi.org/10.1007/s00122-018-3250-z.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pupilli F, Labombarda P, Scotti C, Arcioni S. RFLP analysis allows for the identification of alfalfa ecotypes. Plant Breed. 2000;119:271–6. https://doi.org/10.1046/j.1439-0523.2000.00478.x.

    CAS 
    Article 

    Google Scholar
     

  • Nie G, Huang T, Ma X, Huang L, Peng Y, Yan Y, Li Z, Wang X, Zhang X. Genetic variability evaluation and cultivar identification of tetraploid annual ryegrass using SSR markers. Peer J. 2019;7:e7742. https://doi.org/10.7717/peerj.7742.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuang M, Yang WH, Xu HX, Wang YQ. Construction of DNA Fingerprinting and analysis of genetic diversity with SSR markers for cotton major varieties in China. Scientia Agricultura Sinica. 2011;44(1):20–7.


    Google Scholar
     

  • Humberto RM, Amalio SV, Octavio M, June S, Corina HK, Celso C, Tianzhen Z. Analysis and optimization of bulk DNA sampling with binary scoring for germplasm characterization. PLoS One. 2013;8:e79936.

    Article 

    Google Scholar
     

  • Kölliker R, Jones ES, Jahufer MZZ, Forster JW. Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica. 2001;121:305–15. https://doi.org/10.1023/A:1012048103585.

    Article 

    Google Scholar
     

  • Byrne S, Czaban A, Studer B, Panitz F, Bendixen C, Asp T. Genome wide allele frequency fingerprints (GWAFFS) of populations via genotyping by sequencing. PLoS One. 2013;8:e57438. https://doi.org/10.1371/journal.pone.005743.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RAD-seq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92. https://doi.org/10.1038/nrg.2015.28.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced rad markers. PLoS One. 2008;3:e3376.

    Article 

    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. https://doi.org/10.1101/274100.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knorst V, Yates S, Byrne S, Asp T, Widmer F, Studer B, Kölliker R. First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes. Grassland Sci. 2019;65:125–34. https://doi.org/10.1111/grs.12225.

    CAS 
    Article 

    Google Scholar
     

  • Kopecky D, Havránková M, Loureiro J, Castro S, Lukaszewski AJ, Barto J, Kopecká J, El Dole J. Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum. Cytogenet Genome Res. 2010;129:162–72. https://doi.org/10.1159/000313379.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li H, Richard D. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2010;26(5):589–95. https://doi.org/10.1093/bioinformatics/btp698.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Der-Auwera GA, Carneiro MO, Hartl C, Poplin R, Thibault J. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43.

    Article 

    Google Scholar
     

  • Smouse RPP, Peakall R, GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28(19):2537–9. https://doi.org/10.1093/bioinformatics/bts460.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pembleton LW, Cogan NOI, Forster JW. STAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour. 2013;13:946–52. https://doi.org/10.1111/1755-0998.12129.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Whitlock MC. G’st and D do not replace Fst. Mol Ecol. 2015;20:1083–91. https://doi.org/10.1111/j.1365-294X.2010.04996.x.

    Article 

    Google Scholar
     

  • Xu S, Song N, Zhao L, Cai S, Han Z, Gao T. Genomic evidence for local adaptation in the ovoviviparous marine fish Sebastiscus marmoratus with a background of population homogeneity. Sci Rep. 2017;7(1):1–12. https://doi.org/10.1038/s41598-017-01742-z.

    CAS 
    Article 

    Google Scholar
     

  • Julio R, Albert FM, Carlos SJ, Sara GR, Pablo L, Ramos-Onsins SE, Alejandro SG. Dnasp 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302. https://doi.org/10.1093/molbev/msx248.

    CAS 
    Article 

    Google Scholar
     

  • Hernández-Langford DG, Siqueiros-Delgado ME. Ruíz-Sánchez, E, Nuclear phylogeography of the temperate tree species Chiranthodendron pentadactylon (Malvaceae): quaternary relicts in Mesoamerican cloud forests. BMC Evol Biol. 2020;20:44. https://doi.org/10.1186/s12862-020-01605-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikas JB. A mathematical model for short-term vs. Long-term survival in patients with glioma. Am J Cancer Res. 2014;4:862–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):1–15. https://doi.org/10.1186/1471-2156-11-94.

    Article 

    Google Scholar
     

  • Ivanizs L, Monostori I, Farkas A, Megyeri M, Mikó P, Türkösi E, Gaál E, Lenykó-Thegze A, Szőke-Pázsi K, Szakács É, Darkó É, Kiss T, Kilian A, Molnár I. Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Front Plant Sci. 2019;10:1531. https://doi.org/10.3389/fpls.2019.01531.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9:1322–32. https://doi.org/10.1111/j.1755-0998.2009.02591.x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    CAS 
    Article 

    Google Scholar
     

  • Evanno GS, Regnaut SJ, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. MOL ECOL. 2005;14(8):2611–20.

    CAS 
    Article 

    Google Scholar
     

  • Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol. 2013;5:1229–35.

    Article 

    Google Scholar
     

  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12(2):e1005767.

    Article 

    Google Scholar
     

  • Puecher DI, Robredo CG, Rios RD, Rimieri P. Genetic variability measures among Bromus Catharticus vahl. populations and varieties with RAPD and AFLP markers. Euphytica. 2001;121:229–36. https://doi.org/10.1023/A:1012068415647.

    CAS 
    Article 

    Google Scholar
     

  • Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed. 2000;6:125–34. https://doi.org/10.1023/A:1009680614564.

    Article 

    Google Scholar
     

  • Singh N, Choudhury DR, Singh AK, Kumar S, Srinivasan K, Tyagi RK, Singh NK, Singh R, Jordan IK. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS One. 2013;8:e84136. https://doi.org/10.1371/journal.pone.0084136.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Feuerstein U, Luesink W, Schulze S, Asp T, Studer B, Becker HC, Dehmer KJ. DArT, SNP, and SSR analyses of genetic diversity in Lolium perenne L using bulk sampling. BMC Genet. 2018;19(1):10.

    Article 

    Google Scholar
     

  • Gilliland TJ, Coll R, Calsyn E, De Loose M, van Eijk MJT, Roldán-Ruiz I. Estimating genetic conformity between related ryegrass (Lolium) varieties. 1. morphology and biochemical characterization. Mol Breed. 2000;6:569–80. https://doi.org/10.1023/A:1011361731545.

    Article 

    Google Scholar
     

  • Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata JC, Le Roux X, Niboyet A, Porcher E. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. Rev Agron Sustain Devel. 2017;37:13. https://doi.org/10.1007/s13593-017-0418-x.

    Article 

    Google Scholar
     

  • Gilliland TJ, Gensollen V. Review of the protocols used for assessment of DUS and VCU in Europe-Perspectives [M]//Sustainable use of genetic diversity in forage and turf breeding. Dordrecht: Springer; 2010. p. 261–75.


    Google Scholar
     

  • Pembleton LW, Drayton MC, Bain M, Baillie RC, Inch C, Spangenberg GC, Wang J, Forster JW, Cogan NO. Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars. Theor Appl Genet. 2016;129(5):991–1005. https://doi.org/10.1007/s00122-016-2678-2.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Annicchiarico P, Nazzicari N, Ananta A, Carelli M, Wei Y, Brummer EC. Assessment of cultivar distinctness in alfalfa: a comparison of genotyping-by-sequencing, simple-sequence repeat marker, and morphophysiological observations. Plant Genome. 2016;9(2). https://doi.org/10.3835/plantgenome2015.10.0105

  • Smith JSC. The future of essentially derived variety (EDV) status: predominantly more explanations or essential change. Agronomy. 2021;11:1261. https://doi.org/10.3390/agronomy11061261.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)