• CONAB. Acompanhamento da safra brasileira. Cia Nac Abast Acompan da Safra Bras. 2021;7:1–89.


    Google Scholar
     

  • Hungria M, Mendes IC. Nitrogen fixation with soybean: the perfect symbiosis? In: Biological Nitrogen Fixation. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2015. p. 1009–24. https://doi.org/10.1002/9781119053095.ch99.

    Chapter 

    Google Scholar
     

  • Zilli JÉ, Alves BJR, Rouws LFM, Simões-Araujo JL, de Barros Soares LH, Cassán F, et al. The importance of denitrification performed by nitrogen-fixing bacteria used as inoculants in South America. Plant Soil. 2020;451:5–24. https://doi.org/10.1007/s11104-019-04187-7.

    CAS 
    Article 

    Google Scholar
     

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, et al. Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci. 2006;86:927–39. https://doi.org/10.4141/P05-098.

    Article 

    Google Scholar
     

  • Carvalho FG de, Selbach PA, Bizarro MJ. Eficiência e competitividade de variantes espontâneos isolados de estirpes de Bradyrhizobium spp recomendadas para a cultura da soja (Glycine max). Rev Bras Cienc Solo. 2005;29:883–91. https://doi.org/10.1590/S0100-06832005000600006.

    Article 

    Google Scholar
     

  • Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, et al. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics. 2014;15:420. https://doi.org/10.1186/1471-2164-15-420.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dénarié J, Debellé F, Promé J-C. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem. 1996;65:503–35. https://doi.org/10.1146/annurev.bi.65.070196.002443.

    Article 
    PubMed 

    Google Scholar
     

  • Hungria M, Stacey G. Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biol Biochem. 1997;29:819–30.

    CAS 
    Article 

    Google Scholar
     

  • Downie JA, Walker SA. Plant responses to nodulation factors. Curr Opin Plant Biol. 1999;2:483–9. https://doi.org/10.1016/S1369-5266(99)00018-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Buhian WP, Bensmihen S. Mini-Review: Nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Front Plant Sci. 2018;9 September:1–8. https://doi.org/10.3389/fpls.2018.01247.

    Article 

    Google Scholar
     

  • Pérez-Montaño F, Guasch-Vidal B, González-Barroso S, López-Baena FJ, Cubo T, Ollero FJ, et al. Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol. 2011;162:715–23. https://doi.org/10.1016/j.resmic.2011.05.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, Espuny M del R, et al. Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology. 2008;154:1825–36. https://doi.org/10.1099/mic.0.2007/016337-0.

  • Moscatiello R, Squartini A, Mariani P, Navazio L. Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv. viciae. New Phytol. 2010;188:814–23. https://doi.org/10.1111/j.1469-8137.2010.03411.x.

  • Brencic A, Winans SC. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev. 2005;69:155–94. https://doi.org/10.1128/MMBR.69.1.155-194.2005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogino PC, Nievas FL, Giordano W. A review: Quorum sensing in Bradyrhizobium. Appl Soil Ecol. 2015;94:49–58. https://doi.org/10.1016/j.apsoil.2015.04.016.

    Article 

    Google Scholar
     

  • Liu Y, Jiang X, Guan D, Zhou W, Ma M, Zhao B, et al. Transcriptional analysis of genes involved in competitive nodulation in Bradyrhizobium diazoefficiens at the presence of soybean root exudates. Sci Rep. 2017;7:10946. https://doi.org/10.1038/s41598-017-11372-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riviezzi B, Cagide C, Pereira A, Herrmann C, Lombide R, Lage M, et al. Improved nodulation and seed yield of soybean (Glycine max) with a new isoflavone-based inoculant of Bradyrhizobium elkanii. Rhizosphere. 2020;15:100219. https://doi.org/10.1016/j.rhisph.2020.100219.

    Article 

    Google Scholar
     

  • Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol. 2019;10 JUN:1–13. https://doi.org/10.3389/fmicb.2019.01334.

    Article 

    Google Scholar
     

  • de Lajudie P, Young JPW. International committee on systematics of prokaryotes subcommittee on the taxonomy of rhizobia and agrobacteria minutes of the closed meeting by videoconference, 17 July 2019. Int J Syst Evol Microbiol. 2020;70:3563–71. https://doi.org/10.1099/ijsem.0.004157.

  • Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer H-M, et al. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol Plant Microbe Interact. 2007;20:1353–63.

    CAS 
    Article 

    Google Scholar
     

  • Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer H-M, et al. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics. 2010;10:1391–400. https://doi.org/10.1002/pmic.200900710.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, et al. Integrating DNA methylation and gene expression data in the development of the soybean-Bradyrhizobium N2-fixing symbiosis. Front Microbiol. 2016;7 APR:1–10. https://doi.org/10.3389/fmicb.2016.00518.

    Article 

    Google Scholar
     

  • Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang W, Stacey G, et al. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol. 2007;189:6751–62. https://doi.org/10.1128/JB.00533-07.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei M, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, et al. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr. DNA Res. 2008;15:201–14. https://doi.org/10.1093/dnares/dsn012.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang K, Lindemann A, Hauser F, Göttfert M. The genistein stimulon of Bradyrhizobium japonicum. Mol Genet Genomics. 2008;279:203–11.

    CAS 
    Article 

    Google Scholar
     

  • Lee H-I, Lee J-H, Park K-H, Sangurdekar D, Chang W-S. Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile. Appl Environ Microbiol. 2012;78:2896–903. https://doi.org/10.1128/AEM.07336-11.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohkama-Ohtsu N, Ichida S, Yamaya H, Ohwada T, Itakura M, Hara Y, et al. Peribacteroid solution of soybean root nodules partly induces genomic loci for differentiation into bacteroids of free-living Bradyrhizobium japonicum cells. Soil Sci Plant Nutr. 2015;61:461–70. https://doi.org/10.1080/00380768.2014.994470.

    CAS 
    Article 

    Google Scholar
     

  • Takeshima K, Hidaka T, Wei M, Yokoyama T, Minamisawa K, Mitsui H, et al. Involvement of a novel genistein-inducible multidrug efflux pump of Bradyrhizobium japonicum early in the interaction with Glycine max (L.) Merr. Microbes Environ. 2013;28:414–21. https://doi.org/10.1264/jsme2.ME13057.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han F, He X, Chen W, Gai H, Bai X, He Y, et al. Involvement of a novel TetR-like regulator (BdtR) of Bradyrhizobium diazoefficiens in the efflux of isoflavonoid genistein. Mol Plant-Microbe Interact. 2020;33:1411–23.

    CAS 
    Article 

    Google Scholar
     

  • Gomes DF, Batista JS, Rolla AA, da Silva LP, Bloch C, Galli-Terasawa LV, et al. Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics. 2014;15:643. https://doi.org/10.1186/1471-2164-15-643.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bortolan S, Barcellos FG, Marcelino FC, Hungria M. Expressão dos genes nodC, nodW e nopP em Bradyrhizobium japonicum estirpe CPAC 15 avaliada por RT-qPCR. Pesq Agropec Bras. 2009;44:1491–8.

    Article 

    Google Scholar
     

  • Guo Gao T, Yuan Xu Y, Jiang F, Zhen Li B, Shui Yang J, Tao Wang E, et al. Nodulation characterization and proteomic profiling of Bradyrhizobium liaoningense CCBAU05525 in response to water-soluble humic materials. Sci Rep. 2015;5 April:10836. https://doi.org/10.1038/srep10836.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, et al. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep. 2021;11:2034. https://doi.org/10.1038/s41598-021-81598-6.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen T, Verma NK. Functional annotation and curation of hypothetical proteins present in a newly emerged serotype 1c of Shigella flexneri: emphasis on selecting targets for virulence and vaccine design studies. Genes (Basel). 2020;11:340. https://doi.org/10.3390/genes11030340.

    CAS 
    Article 

    Google Scholar
     

  • Gomes D, Batista JS da S, Rolla AA, da Silva L, Bloch C, Galli-Terasawa L, et al. Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics. 2014;15:643. https://doi.org/10.1186/1471-2164-15-643.

  • Fong JH, Marchler-Bauer A. Protein subfamily assignment using the conserved domain database. BMC Res Notes. 2008;1:114. https://doi.org/10.1186/1756-0500-1-114.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruíz-Valdiviezo VM, Canseco LMCV, Suárez LAC, Gutiérrez-Miceli FA, Dendooven L, Rincón-Rosales R. Symbiotic potential and survival of native rhizobia kept on different carriers. Braz J Microbiol. 2015;46:735–42. https://doi.org/10.1590/S1517-838246320140541.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gully D, Gargani D, Bonaldi K, Grangeteau C, Chaintreuil C, Fardoux J, et al. A peptidoglycan-remodeling enzyme is critical for bacteroid differentiation in Bradyrhizobium spp. during legume symbiosis. Mol Plant-Microbe Interact. 2016;29:447–57. https://doi.org/10.1094/MPMI-03-16-0052-R.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K, Cloots L, et al. Stress response regulators identified through genome-wide transcriptome analysis of the (p)ppGpp-dependent response in Rhizobium etli. Genome Biol. 2011;12:R17. https://doi.org/10.1186/gb-2011-12-2-r17.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quelas JI, Lastra RA, Lorenze C, Escobar M, Lepek VC. Site-directed mutagenesis of Bradyrhizobium diazoefficiens USDA 110 aroA improves bacterial growth and competitiveness for soybean nodulation in the presence of glyphosate. Environ Microbiol Rep. 2020;1758–2229.12917. https://doi.org/10.1111/1758-2229.12917.

  • Tullio LD, Gomes DF, Silva LP, Hungria M, Batista JS da S. Proteomic analysis of Rhizobium freirei PRF 81T reveals the key role of central metabolic pathways in acid tolerance. Appl Soil Ecol. 2019;135:98–103. https://doi.org/10.1016/j.apsoil.2018.11.014.

  • Porto de Souza Vandenberghe L, Karp SG, Binder Pagnoncelli MG, von Linsingen Tavares M, Libardi Junior N, Valladares Diestra K, et al. Classification of enzymes and catalytic properties. In: Biomass, Biofuels, Biochemicals. Elsevier; 2020. p. 11–30. https://doi.org/10.1016/B978-0-12-819820-9.00002-8.

  • Alaminos M, Ramos J. The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products. Arch Microbiol. 2001;176:151–4. https://doi.org/10.1007/s002030100293.

  • Yang Q, Li Y, Yang H, Rang J, Tang S, He L, et al. Proteomic insights into metabolic adaptation to deletion of metE in Saccharopolyspora spinosa. Appl Microbiol Biotechnol. 2015;99:8629–41. https://doi.org/10.1007/s00253-015-6883-8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Plener L, Boistard P, González A, Boucher C, Genin S. Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study. PLoS One. 2012;7:e36877. https://doi.org/10.1371/journal.pone.0036877.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mordukhova EA, Pan J-G. Evolved cobalamin-independent methionine synthase (MetE) improves the acetate and thermal tolerance of Escherichia coli. Appl Environ Microbiol. 2013;79:7905–15. https://doi.org/10.1128/AEM.01952-13.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irazusta V, Estévez C, Amoroso MJ, de Figueroa LIC. Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress. BioMetals. 2012;25:517–27. https://doi.org/10.1007/s10534-012-9531-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Taga ME, Walker GC. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. Mol Plant-Microbe Interact. 2010;23:1643–54. https://doi.org/10.1094/MPMI-07-10-0151.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Percudani R, Peracchi A. A genomic overview of pyridoxal-phosphate‐dependent enzymes. EMBO Rep. 2003;4:850–4. https://doi.org/10.1038/sj.embor.embor914.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rastogi VK, Watson RJ. Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J Bacteriol. 1991;173:2879–87.

    CAS 
    Article 

    Google Scholar
     

  • Watson RJ, Rastogi VK. Cloning and nucleotide sequencing of Rhizobium meliloti aminotransferase genes: an aspartate aminotransferase required for symbiotic nitrogen fixation is atypical. J Bacteriol. 1993;175:1919–28. https://doi.org/10.1128/JB.175.7.1919-1928.1993.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roux B, Rodde N, Jardinaud M-F, Timmers T, Sauviac L, Cottret L, et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 2014;77:817–37. https://doi.org/10.1111/tpj.12442.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Flores-Tinoco CE, Tschan F, Fuhrer T, Margot C, Sauer U, Christen M, et al. Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation. Mol Syst Biol. 2020;16:1–18. https://doi.org/10.15252/msb.20199419.

    CAS 
    Article 

    Google Scholar
     

  • Da Silva Batista JS, Hungria M. Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J Proteomics. 2012;75:1211–9. https://doi.org/10.1016/j.jprot.2011.10.032.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hoshino T, Nakano S, Kondo T, Sato T, Miyoshi A. Squalene–hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3R,S)-2,3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring. Org Biomol Chem. 2004;2:1456–70. https://doi.org/10.1039/B401172D.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A, Newman DiK. Hopanoid lipids: from membranes to plant–bacteria interactions. Nat Rev Microbiol. 2018;16:304–15. https://doi.org/10.1038/nrmicro.2017.173.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • L. Kannenberg E. The occurrence of hopanoid lipids in Bradyrhizobium bacteria. FEMS Microbiol Lett. 1995;127:255–61. https://doi.org/10.1016/0378-1097(95)00070-L.

    CAS 
    Article 

    Google Scholar
     

  • Rosa-Putra S, Nalin R, Domenach A-M, Rohmer M. Novel hopanoids from Frankia spp. and related soil bacteria. Eur J Biochem. 2001;268:4300–6. https://doi.org/10.1046/j.1432-1327.2001.02348.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Silipo A, Vitiello G, Gully D, Sturiale L, Chaintreuil C, Fardoux J, et al. Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nat Commun. 2014;5:5106. https://doi.org/10.1038/ncomms6106.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lukose V, Walvoort MTC, Imperiali B. Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology. 2017;27:820–33. https://doi.org/10.1093/glycob/cwx064.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewandowski T, Huang J, Fan F, Rogers S, Gentry D, Holland R, et al. Staphylococcus aureus formyl-methionyl transferase mutants demonstrate reduced virulence factor production and pathogenicity. Antimicrob Agents Chemother. 2013;57:2929–36. https://doi.org/10.1128/AAC.00162-13.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul PEV, Sangeetha V, Deepika RG. Emerging trends in the industrial production of chemical products by microorganisms. In: Recent Developments in Applied Microbiology and Biochemistry. Elsevier; 2019. p. 107–25. https://doi.org/10.1016/B978-0-12-816328-3.00009-X.

  • Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48:365–77. https://doi.org/10.1111/j.1439-0507.2005.01165.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dubovenko AG, Dunaevsky YE, Belozersky MA, Oppert B, Lord JC, Elpidina EN. Trypsin-like proteins of the fungi as possible markers of pathogenicity. Fungal Biol. 2010;114:151–9. https://doi.org/10.1016/j.funbio.2009.11.004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Prasanth CN, Viswanathan R, Malathi P, Sundar AR. Comparative transcriptome analysis of candidate secretory effector proteins from Colletotrichum falcatum infecting sugarcane. Agri Gene. 2019;13:100089. https://doi.org/10.1016/j.aggene.2019.100089.

    Article 

    Google Scholar
     

  • STORK I, GARTEMANN K-H, BURGER A, EICHENLAUB R. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato. Mol Plant Pathol. 2008;9:599–608. https://doi.org/10.1111/j.1364-3703.2008.00484.x.

    Article 
    PubMed 

    Google Scholar
     

  • Redman RS, Rodriguez RJ. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it’s role in pathogenicity. Mycol Res. 2002;106:1427–34. https://doi.org/10.1017/S0953756202006883.

    CAS 
    Article 

    Google Scholar
     

  • Rosander A, Frykberg L, Ausmees N, Müller P. Identification of extracytoplasmic proteins in Bradyrhizobium japonicum using phage display. Mol Plant-Microbe Interact. 2003;16:727–37. https://doi.org/10.1094/MPMI.2003.16.8.727.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sarma AD, Emerich DW. Global protein expression pattern of Bradyrhizobium japonicum bacteroids: A prelude to functional proteomics. Proteomics. 2005;5:4170–84. https://doi.org/10.1002/pmic.200401296.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Meneses N, Mendoza-Hernández G, Encarnación S. The extracellular proteome of Rhizobium etli CE3 in exponential and stationary growth phase. Proteome Sci. 2010;8:51.

    Article 

    Google Scholar
     

  • Nilsson JF, Castellani LG, Draghi WO, Pérez-Giménez J, Torres Tejerizo GA, Pistorio M. Proteomic analysis of Rhizobium favelukesii LPU83 in response to acid stress. J Proteome Res. 2019;18:3615–29. https://doi.org/10.1021/acs.jproteome.9b00275.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Igiehon NO, Babalola OO, Aremu BR. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol. 2019;19:159. https://doi.org/10.1186/s12866-019-1536-1.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert KB, Vanderlinde EM, Yost CK. Mutagenesis of the carboxy terminal protease CtpA decreases desiccation tolerance in Rhizobium leguminosarum. FEMS Microbiol Lett. 2007;272:65–74. https://doi.org/10.1111/j.1574-6968.2007.00735.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Price PA, Tanner HR, Dillon BA, Shabab M, Walker GC, Griffitts JS. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc Natl Acad Sci. 2015;112:15244–9. https://doi.org/10.1073/pnas.1417797112.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prathiviraj R, Chellapandi P. Evolutionary genetic analysis of unassigned peptidase clan-associated microbial virulence and pathogenesis. Biologia (Bratisl). 2020;75:2083–92. https://doi.org/10.2478/s11756-020-00529-4.

    CAS 
    Article 

    Google Scholar
     

  • Sudtachat N, Ito N, Itakura M, Masuda S, Eda S, Mitsui H, et al. Aerobic vanillate degradation and c1 compound metabolism in Bradyrhizobium japonicum. Appl Environ Microbiol. 2009;75:5012–7. https://doi.org/10.1128/AEM.00755-09.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito N, Itakura M, Eda S, Saeki K, Oomori H, Yokoyama T, et al. Global gene expression in Bradyrhizobium japonicum cultured with vanillin, vanillate, 4-hydroxybenzoate and protocatechuate. Microbes Environ. 2006;21:240–50. https://doi.org/10.1264/jsme2.21.240.

    Article 

    Google Scholar
     

  • Laranjo M, Alexandre A, Oliveira S. Global transcriptional response to salt shock of the plant microsymbiont Mesorhizobium loti MAFF303099. Res Microbiol. 2017;168:55–63. https://doi.org/10.1016/j.resmic.2016.07.006.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Guerrero-Castro J, Lozano L, Sohlenkamp C. Dissecting the acid stress response of Rhizobium tropici CIAT 899. Front Microbiol. 2018;9 APR:1–14. https://doi.org/10.3389/fmicb.2018.00846.

    Article 

    Google Scholar
     

  • Sugawara M, Sadowsky MJ. Influence of elevated atmospheric carbon dioxide on transcriptional responses of Bradyrhizobium japonicum in the soybean rhizoplane. Microbes Environ. 2013;28:217–27. https://doi.org/10.1264/jsme2.ME12190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn MF. Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions. Crit Rev Microbiol. 2015;41:411–51. https://doi.org/10.3109/1040841X.2013.856854.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Prell J, Bourdes a., Karunakaran R, Lopez-Gomez M, Poole P. Pathway of -aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis. J Bacteriol. 2009;191:2177–86. https://doi.org/10.1128/JB.01714-08.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatè R, Ferraioli S, Filosa S, Cermola M, Riccio A, Iaccarino M, et al. Glutamine utilization by Rhizobium etli. Mol Plant-Microbe Interact. 2004;17:720–8. https://doi.org/10.1094/MPMI.2004.17.7.720.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Epa R, Scott NE, Skoneczny D, Sharma M, Snow AJD, et al. A sulfoglycolytic entner-doudoroff pathway in Rhizobium leguminosarum bv. trifolii SRDI565. Appl Environ Microbiol. 2020;86:1–15. https://doi.org/10.1128/AEM.00750-20.

  • Sarma AD, Emerich DW. A comparative proteomic evaluation of culture grown vs nodule isolated Bradyrhizobium japonicum. Proteomics. 2006;6:3008–28. https://doi.org/10.1002/pmic.200500783.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Maximiano MR, Megías E, Santos IR, Santos LS, Ollero FJ, Megías M, et al. Proteome responses of Rhizobium tropici CIAT 899 upon apigenin and salt stress induction. Appl Soil Ecol. 2021;159:103815. https://doi.org/10.1016/j.apsoil.2020.103815.

    Article 

    Google Scholar
     

  • Epstein B, Abou-Shanab RAI, Shamseldin A, Taylor MR, Guhlin J, Burghardt LT, et al. Genome-wide association analyses in the model Rhizobium Ensifer meliloti. mSphere. 2018;3:1–15. https://doi.org/10.1128/mSphere.00386-18.

  • Douglas CD, Ngu TT, Kaluarachchi H, Zamble DB. Metal transfer within the Escherichia coli HypB–HypA complex of hydrogenase accessory proteins. Biochemistry. 2013;52:6030–9. https://doi.org/10.1021/bi400812r.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kaneko T. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 2002;9:189–97. https://doi.org/10.1093/dnares/9.6.189.

  • Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Pains Rodrigues E, et al. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics. 2012;13:735. https://doi.org/10.1186/1471-2164-13-735.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annan H, Golding A-L, Zhao Y, Dong Z. Choice of hydrogen uptake (Hup) status in legume-rhizobia symbioses. Ecol Evol. 2012;2:2285–90. https://doi.org/10.1002/ece3.325.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boddey LH, Hungria M. Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biol Fertil Soils. 1997;25:407–15. https://doi.org/10.1007/s003740050333.

    CAS 
    Article 

    Google Scholar
     

  • Hernando Y, Palacios J, Imperial J, Ruiz-Argueso T. Rhizobium leguminosarum bv. viciae hypA gene is specifically expressed in pea (Pisum sativum) bacteroids and required for hydrogenase activity and processing. FEMS Microbiol Lett. 1998;169:295–302. https://doi.org/10.1111/j.1574-6968.1998.tb13332.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Franck WL, Chang W, Qiu J, Sugawara M, Sadowsky MJ, Smith SA, et al. Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. J Bacteriol. 2008;190:6697–705. https://doi.org/10.1128/JB.00543-08.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reader JS, Metzgar D, Schimmel P, de Crécy-Lagard V. Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine. J Biol Chem. 2004;279:6280–5. https://doi.org/10.1074/jbc.M310858200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Marchetti M, Capela D, Poincloux R, Benmeradi N, Auriac M-C, Le Ru A, et al. Queuosine biosynthesis is required for Sinorhizobium meliloti-induced cytoskeletal modifications on hela cells and symbiosis with Medicago truncatula. PLoS One. 2013;8:e56043. https://doi.org/10.1371/journal.pone.0056043.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand JMB, Dagberg B, Uhlin BE, Bjork GR. Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene. Mol Microbiol. 2000;35:924–35. https://doi.org/10.1046/j.1365-2958.2000.01767.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Masi M, Winterhalter M, Pagès J-M. Outer membrane porins. In: Subcellular Biochemistry. Springer International Publishing; 2019. p. 79–123. https://doi.org/10.1007/978-3-030-18768-2_4.

  • Saier MH. Cell membrane, Prokaryotic. In: Encyclopedia of Microbiology. Elsevier; 2009. p. 341–56. https://doi.org/10.1016/B978-012373944-5.00049-3.

  • de María N, Guevara A, Serra MT, García-Luque I, González-Sama A, de Lacoba MG, et al. Putative porin of Bradyrhizobium sp. (Lupinus) bacteroids induced by glyphosate. Appl Environ Microbiol. 2007;73:5075–82. https://doi.org/10.1128/AEM.00392-07.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hohle TH, Franck WL, Stacey G, O’Brian MR. Bacterial outer membrane channel for divalent metal ion acquisition. Proc Natl Acad Sci. 2011;108:15390–5. https://doi.org/10.1073/pnas.1110137108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Sánchez A, Cubillas CA, Miranda F, Dávalos A, García-de los Santos A. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42. Microbiologyopen. 2018;7:e00573. https://doi.org/10.1002/mbo3.573.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics. 2019;11:735–55. https://doi.org/10.1039/C8MT00372F.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Naamala J, Jaiswal SK, Dakora FD. Antibiotics resistance in Rhizobium: type, process, mechanism and benefit for agriculture. Curr Microbiol. 2016;72:804–16.

    CAS 
    Article 

    Google Scholar
     

  • Cabrera JJ, Salas A, Torres MJ, Bedmar EJ, Richardson DJ, Gates AJ, et al. An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochem J. 2016;473:297–309. https://doi.org/10.1042/BJ20150880.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Musa MA, Wahab RA, Huyop F. Homology modelling and in silico substrate-binding analysis of a Rhizobium sp. RC1 haloalkanoic acid permease. Biotechnol Biotechnol Equip. 2018;32:339–49. https://doi.org/10.1080/13102818.2018.1432417.

    CAS 
    Article 

    Google Scholar
     

  • Eda S, Mitsui H, Minamisawa K. Involvement of the SmeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti. Appl Environ Microbiol. 2011;77:2855–62. https://doi.org/10.1128/AEM.02858-10.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frederix M, Edwards A, Swiderska A, Stanger A, Karunakaran R, Williams A, et al. Mutation of in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins. Mol Microbiol. 2014;93:464–78. https://doi.org/10.1111/mmi.12670.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartlett EJ, Doherty AJ. Nonhomologous end joining in bacteria. In: Lennarz WJ, Lane MDBT-E of BC (Second E, editors. Encyclopedia of Biological Chemistry. Waltham: Elsevier; 2013. p. 266–8. https://doi.org/10.1016/B978-0-12-378630-2.00407-2.

  • Kobayashi H, Simmons LA, Yuan DS, Broughton WJ, Walker GC. Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti. Mol Microbiol. 2007;67:350–63. https://doi.org/10.1111/j.1365-2958.2007.06036.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupuy P, Sauviac L, Bruand C. Stress-inducible NHEJ in bacteria: function in DNA repair and acquisition of heterologous DNA. Nucleic Acids Res. 2019;47:1335–49. https://doi.org/10.1093/nar/gky1212.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dupuy P, Gourion B, Sauviac L, Bruand C. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula. Microbiology. 2017;163:333–42. https://doi.org/10.1099/mic.0.000400.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yurimoto H, Hirai R, Matsuno N, Yasueda H, Kato N, Sakai Y. HxlR, a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis. Mol Microbiol. 2005;57:511–9. https://doi.org/10.1111/j.1365-2958.2005.04702.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gómez-Sagasti MT, Becerril JM, Epelde L, Alkorta I, Garbisu C. Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Cell Biol Toxicol. 2015;31:39–81. https://doi.org/10.1007/s10565-015-9294-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yang X, Teng K, Zhang J, Wang F, Zhang T, Ai G, et al. Transcriptome responses of Lactobacillus acetotolerans F28 to a short and long term ethanol stress. Sci Rep. 2017;7:2650. https://doi.org/10.1038/s41598-017-02975-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mwita L, Chan WY, Pretorius T, Lyantagaye SL, Lapa S V, Avdeeva L V, et al. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates. Gene. 2016;590:18–28. https://doi.org/10.1016/j.gene.2016.05.045.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, et al. Expression islands clustered on the symbiosis island of the Mesorhizobium loti Genome. J Bacteriol. 2004;186:2439–48. https://doi.org/10.1128/JB.186.8.2439-2448.2004.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K, Watanabe A, et al. Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes (Basel). 2011;2:763–87. https://doi.org/10.3390/genes2040763.

    CAS 
    Article 

    Google Scholar
     

  • Ormeño-Orrillo E, Martínez-Romero E, Zúñiga-Dávila D. Identification of the symbiosis island of Bradyrhizobium paxllaeri LMTR 21T. Braz J Microbiol. 2020;51:527–9. https://doi.org/10.1007/s42770-019-00164-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, et al. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci USA. 1996;93:15305–10. https://doi.org/10.1073/pnas.93.26.15305.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loh J, Stacey G. Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol. 2003;69:10–7. https://doi.org/10.1128/AEM.69.1.10-17.2003.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper JE. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol. 2007;103:1355–65. https://doi.org/10.1111/j.1365-2672.2007.03366.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kobayashi H, Graven YN, Broughton WJ, Perret X. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol. 2004;51:335–47. https://doi.org/10.1046/j.1365-2958.2003.03841.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H, et al. Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma-54 gene (RpoN). J Bacteriol. 1991;173:1125–38. https://doi.org/10.1128/jb.173.3.1125-1138.1991.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauser F, Pessi G, Friberg M, Weber C, Rusca N, et al. Dissection of the Bradyrhizobium japonicum NifA + sigma54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation. Mol Genet Genomics. 2007;278:255–71. https://doi.org/10.1007/s00438-007-0246-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Čuklina, J., Hahn, J., Imakaev, M., et al. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis – a rich resource to identify new transcripts, proteins and to study gene regulation. BMC Genomics. 2016;17:302 (2016). https://doi.org/10.1186/s12864-016-2602-9.

  • Beck C, Marty R, Kläusli S, Hennecke H, Göttfert M. Dissection of the transcription machinery for housekeeping genes of Bradyrhizobium japonicum. J Bacteriol. 1997;179:364–9. https://doi.org/10.1128/jb.179.2.364-369.1997.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier D, Casas-Pastor D, Fritz G, Becker A. Gene regulation by extracytoplasmic function (ECF) o factors in alpha-rhizobia. Adv Bot Res. 2020;94:289–321. https://doi.org/10.1016/bs.abr.2019.09.012.

    CAS 
    Article 

    Google Scholar
     

  • Clark SRD, Oresnik IJ, Hynes MF RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet. 2001;264:623–33. https://doi.org/10.1007/s004380000348.

  • Dombrecht B, Marchal K, Vanderleyden J, Michiels J (2002) Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales. Genome Biol. 2002;3:0076.0071. https://doi.org/10.1186/gb-2002-3-12-research0076.

  • Tully RE, van Berkum P, Lovins KW, Keister DL. Identification and sequencing of a cytochrome P450 gene cluster from Bradyrhizobium japonicum. Biochim Biophys Acta – Gene Struct Expre. 1998;1398:243–55. https://doi.org/10.1016/s0167-4781(98)00069-4.

  • Sullivan JT, Brown SD, Ronson CW. The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel LacI/GalR-family regulator. PLoS One. 2013;8(1):e53762. https://doi.org/10.1371/journal.pone.0053762.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45. https://doi.org/10.1093/nar/gkv1189.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021. https://doi.org/10.1093/molbev/msab120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, et al. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol. 2013;63 Pt_2:616–24. https://doi.org/10.1099/ijs.0.034280-0.

    CAS 
    Article 

    Google Scholar
     

  • Hungria M, O’Hara G, Zilli J, Araujo RS, Deaker R, Howieson J. Isolation and growth or rhizobia. In: Working with rhizobia. Canberra: Australian Centre for International Agriculture Reserch (ACIAR). 2016. p. 39–60.


    Google Scholar
     

  • Beringer JE. R Factor transfer in Rhizobium leguminosarum. Microbiology. 1974;84:188–98. https://doi.org/10.1099/00221287-84-1-188.

    CAS 
    Article 

    Google Scholar
     

  • Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, et al. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol. 2014;37:115–26. https://doi.org/10.1016/j.tifs.2014.03.008.

    CAS 
    Article 

    Google Scholar
     

  • Pfaffl MW. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:36e–36. https://doi.org/10.1093/nar/30.9.e36.

    Article 

    Google Scholar
     

  • Gomes DF, Batista JSDS, Schiavon AL, Andrade DS, Hungria M. Proteomic profiling of Rhizobium tropici PRF 81: identification of conserved and specific responses to heat stress. BMC Microbiol. 2012;12:84. https://doi.org/10.1186/1471-2180-12-84.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)