• Siegel RL, Sahar L, Portier KM, Ward EM, Jemal A. Cancer death rates in US congressional districts. CA Cancer J Clin. 2015;65:339–44. https://doi.org/10.3322/caac.21292.

    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Jemal A. Cancer statistics. 2020. CA Cancer J Clin. 2020;70:7–30. https://doi.org/10.3322/caac.21590.

  • Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71:264–79. https://doi.org/10.3322/caac.21657.

    Article 

    Google Scholar
     

  • Rinaldi F, Hanieh PN, Del Favero E, Rondelli V, Brocca P, Pereira MC, et al. Decoration of Nanovesicles with pH (Low) Insertion Peptide (pHLIP) for Targeted Delivery. Nanoscale Res Lett. 2018;13:391. https://doi.org/10.1186/s11671-018-2807-8.

    CAS 
    Article 

    Google Scholar
     

  • Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18:493–502. https://doi.org/10.1038/s41575-021-00457-x.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou S, Treloar AE, Lupien M. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discov. 2016;6:1215–29. https://doi.org/10.1158/2159-8290.Cd-16-0745.

    Article 

    Google Scholar
     

  • Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours – past lessons and future promise. Nat Rev Clin Oncol. 2020;17:91–107. https://doi.org/10.1038/s41571-019-0267-4.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • van der Pol Y, Mouliere F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell. 2019;36:350–68. https://doi.org/10.1016/j.ccell.2019.09.003.

    CAS 
    Article 

    Google Scholar
     

  • Calses PC, Crawford JJ, Lill JR, Dey A. Hippo Pathway in Cancer: Aberrant Regulation and Therapeutic Opportunities. Trends Cancer. 2019;5:297–307. https://doi.org/10.1016/j.trecan.2019.04.001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13:1886–918. https://doi.org/10.3390/ijms13021886.

    CAS 
    Article 

    Google Scholar
     

  • Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90. https://doi.org/10.1038/sj.onc.1210421.

    CAS 
    Article 

    Google Scholar
     

  • Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539:452–5. https://doi.org/10.1038/nature20149.

    CAS 
    Article 

    Google Scholar
     

  • Lu S, Zhang J, Lian X, Sun L, Meng K, Chen Y, et al. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res. 2019;47:8111–25. https://doi.org/10.1093/nar/gkz646.

    CAS 
    Article 

    Google Scholar
     

  • Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci. 2021;64:22–50. https://doi.org/10.1007/s11427-020-1700-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16:167–79. https://doi.org/10.1038/nrd.2016.117.

    CAS 
    Article 

    Google Scholar
     

  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9. https://doi.org/10.1038/nrg2521.

    CAS 
    Article 

    Google Scholar
     

  • Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15 Spec No 1:R17–29. https://doi.org/10.1093/hmg/ddl046.

  • Li G, Zhang T, Huang K, Zhu Y, Xu K, Gu J, et al. Long noncoding RNA GAS8-AS1: A novel biomarker in human diseases. Biomed Pharmacother. 2021;139:111572. https://doi.org/10.1016/j.biopha.2021.111572.

    CAS 
    Article 

    Google Scholar
     

  • Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18. https://doi.org/10.1038/nrc.2017.99.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wright MW, Bruford EA. Naming ‘junk’: human non-protein coding RNA (ncRNA) gene nomenclature. Hum Genomics. 2011;5:90–8. https://doi.org/10.1186/1479-7364-5-2-90.

    Article 

    Google Scholar
     

  • Liu J, Liu T, Wang X, He A. Circles reshaping the RNA world: from waste to treasure. Mol Cancer. 2017;16:58. https://doi.org/10.1186/s12943-017-0630-y.

    CAS 
    Article 

    Google Scholar
     

  • Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev. 2016;96:1297–325. https://doi.org/10.1152/physrev.00041.2015.

    CAS 
    Article 

    Google Scholar
     

  • Chan JJ, Tay Y. Noncoding RNA:RNA Regulatory Networks in Cancer. Int J Mol Sci 2018;19. https://doi.org/10.3390/ijms19051310.

  • Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the Interactions of mRNAs and ncRNAs to Predict Competing Endogenous RNA Networks in Osteosarcoma Chemo-Resistance. Mol Ther. 2019;27:518–30. https://doi.org/10.1016/j.ymthe.2019.01.001.

    CAS 
    Article 

    Google Scholar
     

  • Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16:94. https://doi.org/10.1186/s12943-017-0663-2.

    CAS 
    Article 

    Google Scholar
     

  • Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10:3503–17. https://doi.org/10.7150/thno.42174.

    CAS 
    Article 

    Google Scholar
     

  • Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Wu M. Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Front Cell Neurosci. 2019;13:327. https://doi.org/10.3389/fncel.2019.00327.

    CAS 
    Article 

    Google Scholar
     

  • Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer. 2021;20:4. https://doi.org/10.1186/s12943-020-01300-8.

    CAS 
    Article 

    Google Scholar
     

  • Chen X, Yang T, Wang W, Xi W, Zhang T, Li Q, et al. Circular RNAs in immune responses and immune diseases. Theranostics. 2019;9:588–607. https://doi.org/10.7150/thno.29678.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 2017;3:17053. https://doi.org/10.1038/nplants.2017.53.

    CAS 
    Article 

    Google Scholar
     

  • Jiang JY, Ju CJ, Hao J, Chen M, Wang W. JEDI: circular RNA prediction based on junction encoders and deep interaction among splice sites. Bioinformatics. 2021;37:i289-i98. https://doi.org/10.1093/bioinformatics/btab288.

    CAS 
    Article 

    Google Scholar
     

  • Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19:172. https://doi.org/10.1186/s12943-020-01286-3.

    CAS 
    Article 

    Google Scholar
     

  • Zhou J, Ge Y, Hu Y, Rong D, Fu K, Wang H, et al. Circular RNAs as novel rising stars with huge potentials in development and disease. Cancer Biomark. 2018;22:597–610. https://doi.org/10.3233/cbm-181296.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dong W, Dai ZH, Liu FC, Guo XG, Ge CM, Ding J, et al. The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine. 2019;45:155–67. https://doi.org/10.1016/j.ebiom.2019.06.030.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, et al. Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics. 2021;11:1732–52. https://doi.org/10.7150/thno.45302.

    CAS 
    Article 

    Google Scholar
     

  • He D, Yang X, Kuang W, Huang G, Liu X, Zhang Y. The Novel Circular RNA Circ-PGAP3 Promotes the Proliferation and Invasion of Triple Negative Breast Cancer by Regulating the miR-330-3p/Myc Axis. Onco Targets Ther. 2020;13:10149–59. https://doi.org/10.2147/ott.S274574.

    Article 

    Google Scholar
     

  • Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, et al. The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 2018;17:160. https://doi.org/10.1186/s12943-018-0914-x.

    CAS 
    Article 

    Google Scholar
     

  • Zeng K, Wang S. Circular, RNAs. The crucial regulatory molecules in colorectal cancer. Pathol Res Pract. 2020;216:152861. https://doi.org/10.1016/j.prp.2020.152861.

    CAS 
    Article 

    Google Scholar
     

  • Liu P, Zou Y, Li X, Yang A, Ye F, Zhang J, et al. circGNB1 Facilitates Triple-Negative Breast Cancer Progression by Regulating miR-141-5p-IGF1R Axis. Front Genet. 2020;11:193. https://doi.org/10.3389/fgene.2020.00193.

    CAS 
    Article 

    Google Scholar
     

  • Shen C, Wu Z, Wang Y, Gao S, Da L, Xie L, et al. Downregulated hsa_circ_0077837 and hsa_circ_0004826, facilitate bladder cancer progression and predict poor prognosis for bladder cancer patients. Cancer Med. 2020;9:3885–903. https://doi.org/10.1002/cam4.3006.

    CAS 
    Article 

    Google Scholar
     

  • Li Y, Shi P, Zheng T, Ying Z, Jiang D. Circular RNA hsa_circ_0131242 Promotes Triple-Negative Breast Cancer Progression by Sponging hsa-miR-2682. Onco Targets Ther. 2020;13:4791–8. https://doi.org/10.2147/ott.S246957.

    Article 

    Google Scholar
     

  • Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19:128. https://doi.org/10.1186/s12943-020-01246-x.

    CAS 
    Article 

    Google Scholar
     

  • Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 2020;19:13. https://doi.org/10.1186/s12943-020-1139-3.

    CAS 
    Article 

    Google Scholar
     

  • Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet. 2016;17:679–92. https://doi.org/10.1038/nrg.2016.114.

    CAS 
    Article 

    Google Scholar
     

  • Bai H, Lei K, Huang F, Jiang Z, Zhou X. Exo-circRNAs: a new paradigm for anticancer therapy. Mol Cancer. 2019;18:56. https://doi.org/10.1186/s12943-019-0986-2.

    Article 

    Google Scholar
     

  • Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The Landscape of Circular RNA in Cancer. Cell 2019;176:869 – 81.e13. https://doi.org/10.1016/j.cell.2018.12.021.

  • Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer. 2020;19:165. https://doi.org/10.1186/s12943-020-01276-5.

    CAS 
    Article 

    Google Scholar
     

  • Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10:101. https://doi.org/10.1186/s13045-017-0471-6.

    CAS 
    Article 

    Google Scholar
     

  • Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling – a versatile player in kidney injury and repair. Nat Rev Nephrol. 2021;17:172–84. https://doi.org/10.1038/s41581-020-00343-w.

    CAS 
    Article 

    Google Scholar
     

  • Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci. 2015;72:4157–72. https://doi.org/10.1007/s00018-015-2028-6.

    CAS 
    Article 

    Google Scholar
     

  • Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol. 2016;594:4837–47. https://doi.org/10.1113/jp271754.

    Article 

    Google Scholar
     

  • Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020;9. https://doi.org/10.3390/cells9030589.

  • Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L. Role of Wnt Signaling in Adult Hippocampal Neurogenesis in Health and Disease. Front Cell Dev Biol. 2020;8:860. https://doi.org/10.3389/fcell.2020.00860.

    Article 

    Google Scholar
     

  • Camilli TC, Weeraratna AT. Striking the target in Wnt-y conditions: intervening in Wnt signaling during cancer progression. Biochem Pharmacol 2010;80:702 – 11. https://doi.org/10.1016/j.bcp.2010.03.002.

  • Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 2020;19:9. https://doi.org/10.1186/s12943-020-1133-9.

    CAS 
    Article 

    Google Scholar
     

  • Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 2017;16:124. https://doi.org/10.1186/s12943-017-0700-1.

    CAS 
    Article 

    Google Scholar
     

  • Mazieres J, He B, You L, Xu Z, Jablons DM. Wnt signaling in lung cancer. Cancer Lett. 2005;222:1–10. https://doi.org/10.1016/j.canlet.2004.08.040.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu Z, et al. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 2020;39:232. https://doi.org/10.1186/s13046-020-01690-z.

    CAS 
    Article 

    Google Scholar
     

  • Han P, Li JW, Zhang BM, Lv JC, Li YM, Gu XY, et al. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer. 2017;16:9. https://doi.org/10.1186/s12943-017-0583-1.

    CAS 
    Article 

    Google Scholar
     

  • Tan TZ, Rouanne M, Tan KT, Huang RY, Thiery JP. Molecular Subtypes of Urothelial Bladder Cancer: Results from a Meta-cohort Analysis of 2411 Tumors. Eur Urol. 2019;75:423–32. https://doi.org/10.1016/j.eururo.2018.08.027.

    CAS 
    Article 

    Google Scholar
     

  • Zhan Y, Zhang L, Yu S, Wen J, Liu Y, Zhang X. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer. J Exp Clin Cancer Res. 2020;39:136. https://doi.org/10.1186/s13046-020-01624-9.

    CAS 
    Article 

    Google Scholar
     

  • Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, et al. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res. 2020;30:885–901. https://doi.org/10.1038/s41422-020-0370-1.

    CAS 
    Article 

    Google Scholar
     

  • Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, et al. CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 2019;18:150. https://doi.org/10.1186/s12943-019-1076-1.

    CAS 
    Article 

    Google Scholar
     

  • Yue X, Lan F, Xia T. Hypoxic Glioma Cell-Secreted Exosomal miR-301a Activates Wnt/β-catenin Signaling and Promotes Radiation Resistance by Targeting TCEAL7. Mol Ther. 2019;27:1939–49. https://doi.org/10.1016/j.ymthe.2019.07.011.

    CAS 
    Article 

    Google Scholar
     

  • Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, et al. LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 2018;37:225. https://doi.org/10.1186/s13046-018-0864-6.

    CAS 
    Article 

    Google Scholar
     

  • Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny-Geier G, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun. 2018;9:3839. https://doi.org/10.1038/s41467-018-06069-5.

    CAS 
    Article 

    Google Scholar
     

  • Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2004;101:3118–23. https://doi.org/10.1073/pnas.0308648100.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang G, Liang M, Liu H, Huang J, Li P, Wang C, et al. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 2020;11:1065. https://doi.org/10.1038/s41419-020-03276-1.

    CAS 
    Article 

    Google Scholar
     

  • Gao N, Ye B. Circ-SOX4 drives the tumorigenesis and development of lung adenocarcinoma via sponging miR-1270 and modulating PLAGL2 to activate WNT signaling pathway. Cancer Cell Int. 2020;20:2. https://doi.org/10.1186/s12935-019-1065-x.

    CAS 
    Article 

    Google Scholar
     

  • Ge Z, Li LF, Wang CY, Wang Y, Ma WL. CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer. Eur Rev Med Pharmacol Sci. 2018;22:8203–9. https://doi.org/10.26355/eurrev_201812_16513.

    Article 

    Google Scholar
     

  • Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, et al. N(6)-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer. 2020;19:163. https://doi.org/10.1186/s12943-020-01281-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He J, Xie Q, Xu H, Li J, Li Y. Circular RNAs and cancer. Cancer Lett 2017;396:138 – 44. https://doi.org/10.1016/j.canlet.2017.03.027.

  • Wang L, Li B, Yi X, Xiao X, Zheng Q, Ma L. Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β-catenin pathway. Cell Prolif. 2021;54:e12981. https://doi.org/10.1111/cpr.12981.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109. https://doi.org/10.1016/0092-8674(82)90409-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Yang J, Evans PM, Liu C. Wnt signaling: the good and the bad. Acta Biochim Biophys Sin (Shanghai). 2008;40:577 – 94. https://doi.org/10.1111/j.1745-7270.2008.00440.x.

  • Korzh V. Winding roots of Wnts. Zebrafish. 2008;5:159–68. https://doi.org/10.1089/zeb.2008.0532.

    Article 
    PubMed 

    Google Scholar
     

  • Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127:469 – 80. https://doi.org/10.1016/j.cell.2006.10.018.

  • Perochon J, Carroll LR, Cordero JB. Wnt Signalling in Intestinal Stem Cells: Lessons from Mice and Flies. Genes (Basel). 2018;9. https://doi.org/10.3390/genes9030138.

  • Mukherjee T, Balaji KN. The WNT Framework in Shaping Immune Cell Responses During Bacterial Infections. Front Immunol. 2019;10:1985. https://doi.org/10.3389/fimmu.2019.01985.

  • Hayashi K, Erikson DW, Tilford SA, Bany BM, Maclean JA 2nd, Rucker EB 3. Wnt genes in the mouse uterus: potential regulation of implantation. Biol Reprod. 2009;80:989–1000. https://doi.org/10.1095/biolreprod.108.075416. rd, et al.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poindexter KM, Matthew S, Aronchik I, Firestone GL. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells. Cell Biol Toxicol. 2016;32:103–19. https://doi.org/10.1007/s10565-016-9321-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su X, Zhao Y, Wang Y, Zhang L, Zan L, Wang H. Overexpression of the Rybp Gene Inhibits Differentiation of Bovine Myoblasts into Myotubes. Int J Mol Sci 2018;19. https://doi.org/10.3390/ijms19072082.

  • Vladar EK, Königshoff M. Noncanonical Wnt planar cell polarity signaling in lung development and disease. Biochem Soc Trans. 2020;48:231–43. https://doi.org/10.1042/bst20190597.

    CAS 
    Article 

    Google Scholar
     

  • Tan Y, Yu D, Busto GU, Wilson C, Davis RL. Wnt signaling is required for long-term memory formation. Cell Rep. 2013;4:1082–9. https://doi.org/10.1016/j.celrep.2013.08.007.

    CAS 
    Article 

    Google Scholar
     

  • Cerpa W, Farías GG, Godoy JA, Fuenzalida M, Bonansco C, Inestrosa NC. Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener. 2010;5:3. https://doi.org/10.1186/1750-1326-5-3.

    CAS 
    Article 

    Google Scholar
     

  • Pandit AA, Gandham RK, Mukhopadhyay CS, Verma R, Sethi RS. Transcriptome analysis reveals the role of the PCP pathway in fipronil and endotoxin-induced lung damage. Respir Res. 2019;20:24. https://doi.org/10.1186/s12931-019-0986-1.

    Article 

    Google Scholar
     

  • Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020;9. https://doi.org/10.3390/cells9092125.

  • Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, et al. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain. 2019;142:3806–33. https://doi.org/10.1093/brain/awz319.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murillo-Garzón V, Gorroño-Etxebarria I, Åkerfelt M, Puustinen MC, Sistonen L, Nees M, et al. Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer. Nat Commun. 2018;9:1747. https://doi.org/10.1038/s41467-018-04042-w.

    CAS 
    Article 

    Google Scholar
     

  • Ueno A, Masugi Y, Yamazaki K, Komuta M, Effendi K, Tanami Y, et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol. 2014;61:1080–7. https://doi.org/10.1016/j.jhep.2014.06.008.

    CAS 
    Article 

    Google Scholar
     

  • Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, Hawkins T, et al. Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci. 2011;31:3729–42. https://doi.org/10.1523/jneurosci.4270-10.2011.

    Article 

    Google Scholar
     

  • Niell N, Larriba MJ, Ferrer-Mayorga G, Sánchez-Pérez I, Cantero R, Real FX, et al. The human PKP2/plakophilin-2 gene is induced by Wnt/β-catenin in normal and colon cancer-associated fibroblasts. Int J Cancer. 2018;142:792–804. https://doi.org/10.1002/ijc.31104.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kaucká M, Petersen J, Janovská P, Radaszkiewicz T, Smyčková L, Daulat AM, et al. Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian WNT/planar cell polarity pathway. Cell Commun Signal. 2015;13:2. https://doi.org/10.1186/s12964-014-0079-1.

    CAS 
    Article 

    Google Scholar
     

  • Babayeva S, Rocque B, Aoudjit L, Zilber Y, Li J, Baldwin C, et al. Planar cell polarity pathway regulates nephrin endocytosis in developing podocytes. J Biol Chem. 2013;288:24035–48. https://doi.org/10.1074/jbc.M113.452904.

    CAS 
    Article 

    Google Scholar
     

  • Vargas JY, Loria F, Wu YJ, Córdova G, Nonaka T, Bellow S, et al. The Wnt/Ca(2+) pathway is involved in interneuronal communication mediated by tunneling nanotubes. Embo j. 2019;38:e101230. https://doi.org/10.15252/embj.2018101230.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2 + and Wnt/β-catenin pathways. J Biol Chem. 2013;288:35651–9. https://doi.org/10.1074/jbc.M112.437913.

    CAS 
    Article 

    Google Scholar
     

  • Jamieson C, Lui C, Brocardo MG, Martino-Echarri E, Henderson BR. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933–46. https://doi.org/10.1242/jcs.167742.

    CAS 
    Article 

    Google Scholar
     

  • Nguyen VHL, Hough R, Bernaudo S, Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res. 2019;12:122. https://doi.org/10.1186/s13048-019-0596-z.

    CAS 
    Article 

    Google Scholar
     

  • Henson JH, Samasa B, Shuster CB, Wikramanayake AH. The nanoscale organization of the Wnt signaling integrator Dishevelled in the vegetal cortex domain of an egg and early embryo. PLoS One. 2021;16:e0248197. https://doi.org/10.1371/journal.pone.0248197.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo J, Cagatay T, Zhou G, Chan CC, Blythe S, Suyama K, et al. Mutations in the human naked cuticle homolog NKD1 found in colorectal cancer alter Wnt/Dvl/beta-catenin signaling. PLoS One. 2009;4:e7982. https://doi.org/10.1371/journal.pone.0007982.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji L, Lu B, Wang Z, Yang Z, Reece-Hoyes J, Russ C, et al. Identification of ICAT as an APC Inhibitor, Revealing Wnt-Dependent Inhibition of APC-Axin Interaction. Mol Cell. 2018;72:37–47.e4. https://doi.org/10.1016/j.molcel.2018.07.040.

    CAS 
    Article 

    Google Scholar
     

  • Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012;149:1192 – 205. https://doi.org/10.1016/j.cell.2012.05.012.

  • Doumpas N, Lampart F, Robinson MD, Lentini A, Nestor CE, Cantù C, et al. TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes. Embo j 2019;38. https://doi.org/10.15252/embj.201798873.

  • Danek P, Kardosova M, Janeckova L, Karkoulia E, Vanickova K, Fabisik M, et al. β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood. 2020;136:2574–87. https://doi.org/10.1182/blood.2019004664.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu X, Zhu X, Qin F, Zhang Y, Lin J, Ding Y, et al. Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner. Mol Cancer. 2018;17:73. https://doi.org/10.1186/s12943-018-0783-3.

    CAS 
    Article 

    Google Scholar
     

  • Huang K, Zhang JX, Han L, You YP, Jiang T, Pu PY, et al. MicroRNA roles in beta-catenin pathway. Mol Cancer. 2010;9:252. https://doi.org/10.1186/1476-4598-9-252.

    CAS 
    Article 

    Google Scholar
     

  • Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 2019;26:29. https://doi.org/10.1186/s12929-019-0523-z.

    Article 

    Google Scholar
     

  • Jo S, Yoon S, Lee SY, Kim SY, Park H, Han J, et al. DKK1 Induced by 1,25D3 Is Required for the Mineralization of Osteoblasts. Cells 2020;9. https://doi.org/10.3390/cells9010236.

  • Yu JJS, Maugarny-Calès A, Pelletier S, Alexandre C, Bellaiche Y, Vincent JP, et al. Frizzled-Dependent Planar Cell Polarity without Secreted Wnt Ligands. Dev Cell 2020;54:583 – 92.e5. https://doi.org/10.1016/j.devcel.2020.08.004.

  • Rogers S, Scholpp S. Vertebrate Wnt5a – At the crossroads of cellular signalling. Semin Cell Dev Biol. 2021;125:3–10. https://doi.org/10.1016/j.semcdb.2021.10.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lapébie P, Borchiellini C, Houliston E. Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis? Bioessays. 2011;33:759–68. https://doi.org/10.1002/bies.201100023.

    CAS 
    Article 

    Google Scholar
     

  • Muñoz-Descalzo S, Gómez-Cabrero A, Mlodzik M, Paricio N. Analysis of the role of the Rac/Cdc42 GTPases during planar cell polarity generation in Drosophila. Int J Dev Biol. 2007;51:379–87. https://doi.org/10.1387/ijdb.062250sm.

    CAS 
    Article 

    Google Scholar
     

  • Park E, Kim GH, Choi SC, Han JK. Role of PKA as a negative regulator of PCP signaling pathway during Xenopus gastrulation movements. Dev Biol. 2006;292:344–57. https://doi.org/10.1016/j.ydbio.2006.01.011.

    CAS 
    Article 

    Google Scholar
     

  • Kim GH, Han JK. JNK and ROKalpha function in the noncanonical Wnt/RhoA signaling pathway to regulate Xenopus convergent extension movements. Dev Dyn. 2005;232:958–68. https://doi.org/10.1002/dvdy.20262.

    CAS 
    Article 

    Google Scholar
     

  • De A. Wnt/Ca2 + signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2011;43:745–56. https://doi.org/10.1093/abbs/gmr079.

    CAS 
    Article 

    Google Scholar
     

  • Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017;19:1274–85. https://doi.org/10.1038/ncb3613.

    CAS 
    Article 

    Google Scholar
     

  • Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, Yamamoto-Furusho JK, et al. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal. 2020;72:109636. https://doi.org/10.1016/j.cellsig.2020.109636.

    CAS 
    Article 

    Google Scholar
     

  • Gong B, Shen W, Xiao W, Meng Y, Meng A, Jia S. The Sect. 14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca(2+) signaling. Elife 2017;6. https://doi.org/10.7554/eLife.26362.

  • Ma L, Wang HY. Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2 + non-canonical pathway. J Biol Chem. 2007;282:28980–90. https://doi.org/10.1074/jbc.M702840200.

    CAS 
    Article 

    Google Scholar
     

  • Wang H, Lee Y, Malbon CC. PDE6 is an effector for the Wnt/Ca2+/cGMP-signalling pathway in development. Biochem Soc Trans. 2004;32:792–6. https://doi.org/10.1042/bst0320792.

    Article 

    Google Scholar
     

  • Chen Y, Chen Z, Tang Y, Xiao Q. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother. 2021;133:110946. https://doi.org/10.1016/j.biopha.2020.110946.

    CAS 
    Article 

    Google Scholar
     

  • Burst HV. RCM Annual Meetings. New frontiers. Nurs Times. 1982;78:suppl 3–7.

  • Malbon CC, Wang HY. Dishevelled: a mobile scaffold catalyzing development. Curr Top Dev Biol. 2006;72:153–66. https://doi.org/10.1016/s0070-2153(05)72002-0.

    Article 

    Google Scholar
     

  • Fiedler B, Wollert KC. Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes. Cardiovasc Res. 2004;63:450–7. https://doi.org/10.1016/j.cardiores.2004.04.002.

    CAS 
    Article 

    Google Scholar
     

  • Ma L, Wang HY. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2 + pathway. J Biol Chem. 2006;281:30990–1001. https://doi.org/10.1074/jbc.M603603200.

    CAS 
    Article 

    Google Scholar
     

  • Jiang X, Guan Y, Zhao Z, Meng F, Wang X, Gao X, et al. Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells 2021;10. https://doi.org/10.3390/cells10040839.

  • Weerackoon N, Gunawardhana KL, Mani A. Wnt Signaling Cascades and Their Role in Coronary Artery Health and Disease. J Cell Signal. 2021;2:52–62. https://doi.org/10.33696/Signaling.2.035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang N, Ding GW, Ding H, Li J, Liu C, Lv L, et al. Research Progress of Circular RNA in Gastrointestinal Tumors. Front Oncol. 2021;11:665246. https://doi.org/10.3389/fonc.2021.665246.

    Article 

    Google Scholar
     

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8. https://doi.org/10.1038/nature11993.

    CAS 
    Article 

    Google Scholar
     

  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91. https://doi.org/10.1038/s41576-019-0158-7.

    CAS 
    Article 

    Google Scholar
     

  • Gao Y, Shang S, Guo S, Li X, Zhou H, Liu H, et al. Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data. Nucleic Acids Res. 2021;49:D1251-d8. https://doi.org/10.1093/nar/gkaa1006.

    CAS 
    Article 

    Google Scholar
     

  • Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. Embo j. 2019;38:e100836. https://doi.org/10.15252/embj.2018100836.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 2021;22:1706–28. https://doi.org/10.1093/bib/bbaa001.

    CAS 
    Article 

    Google Scholar
     

  • Xiao MS, Wilusz JE. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3’ ends. Nucleic Acids Res. 2019;47:8755–69. https://doi.org/10.1093/nar/gkz576.

    CAS 
    Article 

    Google Scholar
     

  • Aufiero S, Reckman YJ, Pinto YM, Creemers EE. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol. 2019;16:503–14. https://doi.org/10.1038/s41569-019-0185-2.

    Article 
    PubMed 

    Google Scholar
     

  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019.

    CAS 
    Article 

    Google Scholar
     

  • Eger N, Schoppe L, Schuster S, Laufs U, Boeckel JN. Circular RNA Splicing. Adv Exp Med Biol. 2018;1087:41–52. https://doi.org/10.1007/978-981-13-1426-1_4.

    CAS 
    Article 

    Google Scholar
     

  • Wilusz JE. A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA. 2018;9:e1478. https://doi.org/10.1002/wrna.1478.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pervouchine DD. Circular exonic RNAs: When RNA structure meets topology. Biochim Biophys Acta Gene Regul Mech. 2019;1862:194384. https://doi.org/10.1016/j.bbagrm.2019.05.002.

    CAS 
    Article 

    Google Scholar
     

  • Liu X, Hu Z, Zhou J, Tian C, Tian G, He M, et al. Interior circular RNA. RNA Biol. 2020;17:87–97. https://doi.org/10.1080/15476286.2019.1669391.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB. Identifying and Characterizing circRNA-Protein Interaction. Theranostics. 2017;7:4183–91. https://doi.org/10.7150/thno.21299.

    CAS 
    Article 

    Google Scholar
     

  • Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87–97. https://doi.org/10.1002/jnr.24356.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Okholm TLH, Sathe S, Park SS, Kamstrup AB, Rasmussen AM, Shankar A, et al. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Med. 2020;12:112. https://doi.org/10.1186/s13073-020-00812-8.

    CAS 
    Article 

    Google Scholar
     

  • Li X, Ding J, Wang X, Cheng Z, Zhu Q. NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene. 2020;39:891–904. https://doi.org/10.1038/s41388-019-1030-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, et al. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 2020;11:32. https://doi.org/10.1038/s41419-020-2230-9.

    CAS 
    Article 

    Google Scholar
     

  • Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan R, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res. 2020;116:1323–34. https://doi.org/10.1093/cvr/cvz215.

    CAS 
    Article 

    Google Scholar
     

  • Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73:5609–12. https://doi.org/10.1158/0008-5472.Can-13-1568.

    Article 

    Google Scholar
     

  • Yan L, Chen YG. Circular RNAs in Immune Response and Viral Infection. Trends Biochem Sci. 2020;45:1022–34. https://doi.org/10.1016/j.tibs.2020.08.006.

    CAS 
    Article 

    Google Scholar
     

  • Yang J, Cheng M, Gu B, Wang J, Yan S, Xu D. CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κB axis. Cell Death Dis. 2020;11:833. https://doi.org/10.1038/s41419-020-03038-z.

    CAS 
    Article 

    Google Scholar
     

  • Su H, Zheng W, Pan J, Lv X, Xin S, Xu T. Circular RNA. circSamd4a Regulates Antiviral Immunity in Teleost Fish by Upregulating STING through Sponging miR-29a-3p. J Immunol. 2021;207:2770–84. https://doi.org/10.4049/jimmunol.2100469.

    CAS 
    Article 

    Google Scholar
     

  • Su H, Chu Q, Zheng W, Chang R, Gao W, Zhang L, et al. Circular RNA circPIKfyve acts as a sponge of miR-21-3p to enhance antiviral immunity through regulating MAVS in teleost fish. J Virol 2021;95. https://doi.org/10.1128/jvi.02296-20.

  • Zheng W, Chu Q, Yang L, Sun L, Xu T. Circular. RNA circDtx1 regulates IRF3-mediated antiviral immune responses through suppression of miR-15a-5p-dependent TRIF downregulation in teleost fish. PLoS Pathog. 2021;17:e1009438. https://doi.org/10.1371/journal.ppat.1009438.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG. RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration In Vivo. Mol Cell 2019;74:508 – 20.e4. https://doi.org/10.1016/j.molcel.2019.02.015.

  • Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020;19:22. https://doi.org/10.1186/s12943-020-1147-3.

    CAS 
    Article 

    Google Scholar
     

  • Wang Y, Liu B. Circular RNA in Diseased Heart. Cells 2020;9. https://doi.org/10.3390/cells9051240.

  • Wang J, Zhu S, Meng N, He Y, Lu R, Yan GR. ncRNA-Encoded Peptides or Proteins and Cancer. Mol Ther. 2019;27:1718–25. https://doi.org/10.1016/j.ymthe.2019.09.001.

    CAS 
    Article 

    Google Scholar
     

  • Wei Y, Zhang Y, Meng Q, Cui L, Xu C. Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder cancer cell growth through activation of LDHA. Am J Transl Res. 2019;11:6838–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan W, Liao X, Chen Z, Li L, Tian T, Yu L, et al. Circular RNA hsa_circRNA_103809 promoted hepatocellular carcinoma development by regulating miR-377-3p/FGFR1/ERK axis. J Cell Physiol. 2020;235:1733–45. https://doi.org/10.1002/jcp.29092.

    CAS 
    Article 

    Google Scholar
     

  • Yang C, Han S. The circular RNA circ0005654 interacts with specificity protein 1 via microRNA-363 sequestration to promote gastric cancer progression. Bioengineered. 2021;12:6305–17. https://doi.org/10.1080/21655979.2021.1971031.

    CAS 
    Article 

    Google Scholar
     

  • Peng Y, Wang HH. Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/β-catenin pathway. Sci Rep. 2020;10:17443. https://doi.org/10.1038/s41598-020-74452-8.

    CAS 
    Article 

    Google Scholar
     

  • Liu WG, Xu Q. Upregulation of circHIPK3 promotes the progression of gastric cancer via Wnt/β-catenin pathway and indicates a poor prognosis. Eur Rev Med Pharmacol Sci. 2019;23:7905–12. https://doi.org/10.26355/eurrev_201909_19004.

    Article 

    Google Scholar
     

  • Yang L, Bi T, Zhou S, Lan Y, Zhang R. CircRASSF2 facilitates the proliferation and metastasis of colorectal cancer by mediating the activity of Wnt/β-catenin signaling pathway by regulating the miR-195-5p/FZD4 axis. Anticancer Drugs. 2021;32:919–29. https://doi.org/10.1097/cad.0000000000001084.

    Article 

    Google Scholar
     

  • Liu R, Deng P, Zhang Y, Wang Y, Peng C. Circ_0082182 promotes oncogenesis and metastasis of colorectal cancer in vitro and in vivo by sponging miR-411 and miR-1205 to activate the Wnt/β-catenin pathway. World J Surg Oncol. 2021;19:51. https://doi.org/10.1186/s12957-021-02164-y.

    Article 

    Google Scholar
     

  • Chen H, Pei L, Xie P, Guo G. Circ-PRKDC Contributes to 5-Fluorouracil Resistance of Colorectal Cancer Cells by Regulating miR-375/FOXM1 Axis and Wnt/β-Catenin Pathway. Onco Targets Ther. 2020;13:5939–53. https://doi.org/10.2147/ott.S253468.

    Article 

    Google Scholar
     

  • Ma Z, Han C, Xia W, Wang S, Li X, Fang P, et al. circ5615 functions as a ceRNA to promote colorectal cancer progression by upregulating TNKS. Cell Death Dis. 2020;11:356. https://doi.org/10.1038/s41419-020-2514-0.

    CAS 
    Article 

    Google Scholar
     

  • Li W, Xu Y, Wang X, Cao G, Bu W, Wang X, et al. circCCT3 Modulates Vascular Endothelial Growth Factor A and Wnt Signaling to Enhance Colorectal Cancer Metastasis Through Sponging miR-613. DNA Cell Biol. 2020;39:118–25. https://doi.org/10.1089/dna.2019.5139.

    CAS 
    Article 

    Google Scholar
     

  • Jin YD, Ren YR, Gao YX, Zhang L, Ding Z. Hsa_circ_0005075 predicts a poor prognosis and acts as an oncogene in colorectal cancer via activating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 2019;23:3311–9. https://doi.org/10.26355/eurrev_201904_17693.

    Article 

    Google Scholar
     

  • Fang G, Ye BL, Hu BR, Ruan XJ, Shi YX. CircRNA_100290 promotes colorectal cancer progression through miR-516b-induced downregulation of FZD4 expression and Wnt/β-catenin signaling. Biochem Biophys Res Commun. 2018;504:184–9. https://doi.org/10.1016/j.bbrc.2018.08.152.

    CAS 
    Article 

    Google Scholar
     

  • Zhu P, Liang H, Huang X, Zeng Q, Liu Y, Lv J, et al. Circular RNA Hsa_circ_0004018 Inhibits Wnt/β-Catenin Signaling Pathway by Targeting microRNA-626/DKK3 in Hepatocellular Carcinoma. Onco Targets Ther. 2020;13:9351–64. https://doi.org/10.2147/ott.S254997.

    Article 
    PubMed Central 

    Google Scholar
     

  • Chen H, Liu S, Li M, Huang P, Li X. circ_0003418 Inhibits Tumorigenesis And Cisplatin Chemoresistance Through Wnt/β-Catenin Pathway In Hepatocellular Carcinoma. Onco Targets Ther. 2019;12:9539–49. https://doi.org/10.2147/ott.S229507.

    Article 

    Google Scholar
     

  • Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu XY, Lin XM, et al. Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics. 2019;9:3526–40. https://doi.org/10.7150/thno.32796.

    CAS 
    Article 

    Google Scholar
     

  • Tan A, Li Q, Chen L. CircZFR promotes hepatocellular carcinoma progression through regulating miR-3619-5p/CTNNB1 axis and activating Wnt/β-catenin pathway. Arch Biochem Biophys. 2019;661:196–202. https://doi.org/10.1016/j.abb.2018.11.020.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhu Q, Lu G, Luo Z, Gui F, Wu J, Zhang D, et al. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis. Biochem Biophys Res Commun. 2018;497:626–32. https://doi.org/10.1016/j.bbrc.2018.02.119.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Guo W, Zhang J, Zhang D, Cao S, Li G, Zhang S, et al. Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget. 2017;8:48169–77. https://doi.org/10.18632/oncotarget.18327.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XY, Liu YR, Zhou JH, Li W, Guo HH, Ma HP. Enhanced expression of circular RNA hsa_circ_000984 promotes cells proliferation and metastasis in non-small cell lung cancer by modulating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 2019;23:3366–74. https://doi.org/10.26355/eurrev_201904_17700.

    Article 

    Google Scholar
     

  • Ding L, Yao W, Lu J, Gong J, Zhang X. Upregulation of circ_001569 predicts poor prognosis and promotes cell proliferation in non-small cell lung cancer by regulating the Wnt/β-catenin pathway. Oncol Lett. 2018;16:453–8. https://doi.org/10.3892/ol.2018.8673.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao Y, Hua Q, Zhou Y, Shen H. CircRNA has_circ_0001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2019;111:1367–75. https://doi.org/10.1016/j.biopha.2018.12.120.

    CAS 
    Article 

    Google Scholar
     

  • Yao Y, Zhou Y, Hua Q. circRNA hsa_circ_0018414 inhibits the progression of LUAD by sponging miR-6807-3p and upregulating DKK1. Mol Ther Nucleic Acids. 2021;23:783–96. https://doi.org/10.1016/j.omtn.2020.12.031.

    CAS 
    Article 

    Google Scholar
     

  • Yao Y, Hua Q, Zhou Y. CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2019;508:37–45. https://doi.org/10.1016/j.bbrc.2018.11.079.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gao S, Yu Y, Liu L, Meng J, Li G. Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci. 2019;233:116692. https://doi.org/10.1016/j.lfs.2019.116692.

    CAS 
    Article 

    Google Scholar
     

  • Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ. Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway. Biomed Res Int. 2016;2016:1579490. https://doi.org/10.1155/2016/1579490.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Deng X, Xiao G, Zheng X, Ma L, Huang W. circ_0001730 promotes proliferation and invasion via the miR-326/Wnt7B axis in glioma cells. Epigenomics. 2019;11:1335–52. https://doi.org/10.2217/epi-2019-0121.

    CAS 
    Article 

    Google Scholar
     

  • Chen Z, Duan X. hsa_circ_0000177-miR-638-FZD7-Wnt Signaling Cascade Contributes to the Malignant Behaviors in Glioma. DNA Cell Biol. 2018;37:791–7. https://doi.org/10.1089/dna.2018.4294.

    CAS 
    Article 

    Google Scholar
     

  • Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J, et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 2019;18:144. https://doi.org/10.1186/s12943-019-1080-5.

    CAS 
    Article 

    Google Scholar
     

  • Li Y, Liu J, Piao J, Ou J, Zhu X. Circ_0109046 promotes the malignancy of endometrial carcinoma cells through the microRNA-105/SOX9/Wnt/β-catenin axis. IUBMB Life. 2021;73:159–76. https://doi.org/10.1002/iub.2415.

    CAS 
    Article 

    Google Scholar
     

  • Shen Q, He T, Yuan H. Hsa_circ_0002577 promotes endometrial carcinoma progression via regulating miR-197/CTNND1 axis and activating Wnt/β-catenin pathway. Cell Cycle. 2019;18:1229–40. https://doi.org/10.1080/15384101.2019.1617004.

    CAS 
    Article 

    Google Scholar
     

  • Wu Z, Shi W, Jiang C. Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem Biophys Res Commun. 2018;502:465–71. https://doi.org/10.1016/j.bbrc.2018.05.184.

    CAS 
    Article 

    Google Scholar
     

  • Wang M, Chen B, Ru Z, Cong L. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun. 2018;504:283–8. https://doi.org/10.1016/j.bbrc.2018.08.175.

    CAS 
    Article 

    Google Scholar
     

  • Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 2022;30:415–30. https://doi.org/10.1016/j.ymthe.2021.08.026.

    CAS 
    Article 

    Google Scholar
     

  • Wang ST, Liu LB, Li XM, Wang YF, Xie PJ, Li Q, et al. Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/β-catenin pathway. Neoplasma. 2019;66:232–9. https://doi.org/10.4149/neo_2018_180710N460.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Xu HD, Xing XJ, Liang ZT, Xia ZH, Zhao Y. CircRNA_069718 promotes cell proliferation and invasion in triple-negative breast cancer by activating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 2019;23:5315–22. https://doi.org/10.26355/eurrev_201906_18198.

    Article 

    Google Scholar
     

  • Liu J, Xue N, Guo Y, Niu K, Gao L, Zhang S, et al. CircRNA_100367 regulated the radiation sensitivity of esophageal squamous cell carcinomas through miR-217/Wnt3 pathway. Aging (Albany NY). 2019;11:12412–27. https://doi.org/10.18632/aging.102580.

    Article 

    Google Scholar
     

  • Li F, Zhang L, Li W, Deng J, Zheng J, An M, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;6:6001–13. https://doi.org/10.18632/oncotarget.3469.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu J, Hu B, Deng L, Cheng L, Fan Q, Lu C. Arsenic sulfide inhibits the progression of gastric cancer through regulating the circRNA_ASAP2/Wnt/β-catenin pathway. Anticancer Drugs. 2022;33:e711-e9. https://doi.org/10.1097/cad.0000000000001246.

    Article 

    Google Scholar
     

  • He Y, Zhang Z, Wang Z, Jiao Y, Kang Q, Li J. Downregulation of circ-SFMBT2 blocks the development of gastric cancer by targeting the miR-885-3p/CHD7 pathway. Anticancer Drugs. 2022;33:e247-e59. https://doi.org/10.1097/cad.0000000000001195.

    Article 

    Google Scholar
     

  • Shi Q, Zhou C, Xie R, Li M, Shen P, Lu Y, et al. CircCNIH4 inhibits gastric cancer progression via regulating DKK2 and FRZB expression and Wnt/β-catenin pathway. J Biol Res (Thessalon). 2021;28:19. https://doi.org/10.1186/s40709-021-00140-x.

    CAS 
    Article 

    Google Scholar
     

  • Fang J, Chen W, Meng X. Downregulating circRNA_0044516 Inhibits Cell Proliferation in Gastric Cancer Through miR-149/Wnt1/β-catenin Pathway. J Gastrointest Surg. 2021;25:1696–705. https://doi.org/10.1007/s11605-020-04834-w.

    Article 

    Google Scholar
     

  • Sun H, Wang Q, Yuan G, Quan J, Dong D, Lun Y, et al. Hsa_circ_0001649 restrains gastric carcinoma growth and metastasis by downregulation of miR-20a. J Clin Lab Anal. 2020;34:e23235. https://doi.org/10.1002/jcla.23235.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu H, Xu Z, Zhang J, Wei Y, Cheng L, Wang J. circ_0038718 promotes colon cancer cell malignant progression via the miR-195-5p/Axin2 signaling axis and also effect Wnt/β-catenin signal pathway. BMC Genomics. 2021;22:768. https://doi.org/10.1186/s12864-021-07880-z.

    Article 

    Google Scholar
     

  • Zhang X, Yao J, Shi H, Gao B, Zhou H, Zhang Y, et al. Hsa_circ_0026628 promotes the development of colorectal cancer by targeting SP1 to activate the Wnt/β-catenin pathway. Cell Death Dis. 2021;12:802. https://doi.org/10.1038/s41419-021-03794-6.

    CAS 
    Article 

    Google Scholar
     

  • Chen Z, Wu J, Liu B, Zhang G, Wang Z, Zhang L, et al. Identification of cis-HOX-HOXC10 axis as a therapeutic target for colorectal tumor-initiating cells without APC mutations. Cell Rep. 2021;36:109431. https://doi.org/10.1016/j.celrep.2021.109431.

    CAS 
    Article 

    Google Scholar
     

  • Yang S, Gao S, Liu T, Liu J, Zheng X, Li Z. Circular. RNA SMARCA5 functions as an anti-tumor candidate in colon cancer by sponging microRNA-552. Cell Cycle. 2021;20:689–701. https://doi.org/10.1080/15384101.2021.1899519.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Dong X, Yan B, Yu W, Shan L. CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis. 2020;11:542. https://doi.org/10.1038/s41419-020-2707-6.

    CAS 
    Article 

    Google Scholar
     

  • Zhao H, Chen S, Fu Q. Exosomes from CD133(+) cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal cancer. J Cell Biochem. 2020;121:3286–97. https://doi.org/10.1002/jcb.29600.

    CAS 
    Article 

    Google Scholar
     

  • Geng Y, Zheng X, Hu W, Wang Q, Xu Y, He W, et al. Hsa_circ_0009361 acts as the sponge of miR-582 to suppress colorectal cancer progression by regulating APC2 expression. Clin Sci (Lond). 2019;133:1197–213. https://doi.org/10.1042/cs20190286.

    CAS 
    Article 

    Google Scholar
     

  • Jin Y, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med Biol Res. 2018;51:e7811. https://doi.org/10.1590/1414-431×20187811.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One. 2015;10:e0131225. https://doi.org/10.1371/journal.pone.0131225.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Zhao J, Huo T, Zhang M, Wu X. Effects of CircRNA-ITCH on proliferation and apoptosis of hepatocellular carcinoma cells through inhibiting Wnt/β-catenin signaling pathway. J buon. 2020;25:1368–74.

    PubMed 

    Google Scholar
     

  • Yang W, Liu Y, Gao R, Xiu Z, Sun T. Knockdown of cZNF292 suppressed hypoxic human hepatoma SMMC7721 cell proliferation, vasculogenic mimicry, and radioresistance. Cell Signal. 2019;60:122–35. https://doi.org/10.1016/j.cellsig.2019.04.011.

    CAS 
    Article 

    Google Scholar
     

  • Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019;20:84. https://doi.org/10.1186/s13059-019-1685-4.

    Article 

    Google Scholar
     

  • Yao X, Mao Y, Wu D, Zhu Y, Lu J, Huang Y, et al. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/β-catenin axis. Cancer Lett. 2021;512:38–50. https://doi.org/10.1016/j.canlet.2021.04.030.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xia D, Chen Z, Liu Q. Circ-PGC increases the expression of FOXR2 by targeting miR-532-3p to promote the development of non-small cell lung cancer. Cell Cycle. 2021;20:2195–209. https://doi.org/10.1080/15384101.2021.1974788.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gao F, Jia L, Han J, Wang Y, Luo W, Zeng Y. Circ-ZNF124 downregulation inhibits non-small cell lung cancer progression partly by inactivating the Wnt/β-catenin signaling pathway via mediating the miR-498/YES1 axis. Anticancer Drugs. 2021;32:257–68. https://doi.org/10.1097/cad.0000000000001014.

    Article 

    Google Scholar
     

  • Jin Z, Gao B, Gong Y, Guan L. Depletion of circ-BIRC6, a circular RNA, suppresses non-small cell lung cancer progression by targeting miR-4491. Biosci Trends. 2021;14:399–407. https://doi.org/10.5582/bst.2020.03310.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhao M, Ma W, Ma C. Circ_0067934 promotes non-small cell lung cancer development by regulating miR-1182/KLF8 axis and activating Wnt/β-catenin pathway. Biomed Pharmacother. 2020;129:110461. https://doi.org/10.1016/j.biopha.2020.110461.

    CAS 
    Article 

    Google Scholar
     

  • Tian F, Yu CT, Ye WD, Wang Q. Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem Biophys Res Commun. 2017;493:1260–6. https://doi.org/10.1016/j.bbrc.2017.09.136.

    CAS 
    Article 

    Google Scholar
     

  • Huo LW, Wang YF, Bai XB, Zheng HL, Wang MD. circKIF4A promotes tumorogenesis of glioma by targeting miR-139-3p to activate Wnt5a signaling. Mol Med. 2020;26:29. https://doi.org/10.1186/s10020-020-00159-1.

    CAS 
    Article 

    Google Scholar
     

  • Yang P, Qiu Z, Jiang Y, Dong L, Yang W, Gu C, et al. Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/β-catenin signaling pathway. Oncotarget. 2016;7:63449–55. https://doi.org/10.18632/oncotarget.11523.

    Article 

    Google Scholar
     

  • Li S, Yu C, Zhang Y, Liu J, Jia Y, Sun F, et al. Circular RNA cir-ITCH Is a Potential Therapeutic Target for the Treatment of Castration-Resistant Prostate Cancer. Biomed Res Int. 2020;2020:7586521. https://doi.org/10.1155/2020/7586521.

    CAS 
    Article 

    Google Scholar
     

  • Lin X, Chen Y, Ye X, Xia X. Circular. RNA ABCB10 promotes cell proliferation and invasion, but inhibits apoptosis via regulating the microRNA–1271–mediated Capn4/Wnt/β–catenin signaling pathway in epithelial ovarian cancer. Mol Med Rep. 2021;23. https://doi.org/10.3892/mmr.2021.12026.

  • Pan Q, Meng X, Li J, Qin X, Chen H, Li Y. CircSAMD11 facilitates progression of cervical cancer via regulating miR-503/SOX4 axis through Wnt/β-catenin pathway. Clin Exp Pharmacol Physiol. 2022;49:175–87. https://doi.org/10.1111/1440-1681.13593.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen JJ, Lei P, Zhou M. hsa_circ_0121582 inhibits leukemia growth by dampening Wnt/β-catenin signaling. Clin Transl Oncol. 2020;22:2293–302. https://doi.org/10.1007/s12094-020-02377-9.

    CAS 
    Article 

    Google Scholar
     

  • Xia L, Wu L, Bao J, Li Q, Chen X, Xia H, et al. Circular RNA circ-CBFB promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FZD3/Wnt/β-catenin pathway. Biochem Biophys Res Commun. 2018;503:385–90. https://doi.org/10.1016/j.bbrc.2018.06.045.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hu Y, Zhao Y, Shi C, Ren P, Wei B, Guo Y, et al. A circular RNA from APC inhibits the proliferation of diffuse large B-cell lymphoma by inactivating Wnt/β-catenin signaling via interacting with TET1 and miR-888. Aging (Albany NY). 2019;11:8068–84. https://doi.org/10.18632/aging.102122.

    Article 

    Google Scholar
     

  • Gong X, Li W, Dong L, Qu F. CircUBAP2 promotes SEMA6D expression to enhance the cisplatin resistance in osteosarcoma through sponging miR-506-3p by activating Wnt/β-catenin signaling pathway. J Mol Histol. 2020;51:329–40. https://doi.org/10.1007/s10735-020-09883-8.

    CAS 
    Article 

    Google Scholar
     

  • Bi W, Huang J, Nie C, Liu B, He G, Han J, et al. CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res. 2018;37:275. https://doi.org/10.1186/s13046-018-0936-7.

    CAS 
    Article 

    Google Scholar
     

  • Chen F, Feng Z, Zhu J, Liu P, Yang C, Huang R, et al. Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther. 2018;19:1139–52. https://doi.org/10.1080/15384047.2018.1480888.

    CAS 
    Article 

    Google Scholar
     

  • Wu H, Xu J, Gong G, Zhang Y, Wu S. CircARL8B Contributes to the Development of Breast Cancer Via Regulating miR-653-5p/HMGA2 Axis. Biochem Genet. 2021;59:1648–65. https://doi.org/10.1007/s10528-021-10082-7.

    CAS 
    Article 

    Google Scholar
     

  • Jiang J, Cheng X. Circular RNA. circABCC4 acts as a ceRNA of miR-154-5p to improve cell viability, migration and invasion of breast cancer cells in vitro. Cell Cycle. 2020;19:2653–61. https://doi.org/10.1080/15384101.2020.1815147.

    CAS 
    Article 

    Google Scholar
     

  • Yao Y, Li X, Cheng L, Wu X, Wu B. Circular RNA FAT atypical cadherin 1 (circFAT1)/microRNA-525-5p/spindle and kinetochore-associated complex subunit 1 (SKA1) axis regulates oxaliplatin resistance in breast cancer by activating the notch and Wnt signaling pathway. Bioengineered. 2021;12:4032–43. https://doi.org/10.1080/21655979.2021.1951929.

    CAS 
    Article 

    Google Scholar
     

  • Liu S, Chen L, Chen H, Xu K, Peng X, Zhang M. Circ_0119872 promotes uveal melanoma development by regulating the miR-622/G3BP1 axis and downstream signalling pathways. J Exp Clin Cancer Res. 2021;40:66. https://doi.org/10.1186/s13046-021-01833-w.

    CAS 
    Article 

    Google Scholar
     

  • Chen J, Zhou X, Yang J, Sun Q, Liu Y, Li N, et al. Circ-GLI1 promotes metastasis in melanoma through interacting with p70S6K2 to activate Hedgehog/GLI1 and Wnt/β-catenin pathways and upregulate Cyr61. Cell Death Dis. 2020;11:596. https://doi.org/10.1038/s41419-020-02799-x.

    CAS 
    Article 

    Google Scholar
     

  • Chen Z, Chen J, Wa Q, He M, Wang X, Zhou J, et al. Knockdown of circ_0084043 suppresses the development of human melanoma cells through miR-429/tribbles homolog 2 axis and Wnt/β-catenin pathway. Life Sci. 2020;243:117323. https://doi.org/10.1016/j.lfs.2020.117323.

    CAS 
    Article 

    Google Scholar
     

  • Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med. 2016;14:225. https://doi.org/10.1186/s12967-016-0977-7.

    CAS 
    Article 

    Google Scholar
     

  • Fan G, Wei X, Xu X. Is the era of sorafenib over? A review of the literature. Ther Adv Med Oncol. 2020;12:1758835920927602. https://doi.org/10.1177/1758835920927602.

    CAS 
    Article 

    Google Scholar
     

  • Saini A, Wallace A, Alzubaidi S, Knuttinen MG, Naidu S, Sheth R, et al. History and Evolution of Yttrium-90 Radioembolization for Hepatocellular Carcinoma. J Clin Med 2019;8. https://doi.org/10.3390/jcm8010055.

  • Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 2011;9:171. https://doi.org/10.1186/1479-5876-9-171.

    CAS 
    Article 

    Google Scholar
     

  • Sasaki R, Kanda T, Fujisawa M, Matsumoto N, Masuzaki R, Ogawa M, et al. Different Mechanisms of Action of Regorafenib and Lenvatinib on Toll-Like Receptor-Signaling Pathways in Human Hepatoma Cell Lines. Int J Mol Sci 2020;21. https://doi.org/10.3390/ijms21093349.

  • Chen CH, Su YJ, Ding H, Duan J, Wang J. Circular. RNA ZNF292 affects proliferation and apoptosis of hepatocellular carcinoma cells by regulating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 2020;24:12124–30. https://doi.org/10.26355/eurrev_202012_24001.

    Article 

    Google Scholar
     

  • Wang C, Zhang T, Liao Q, Dai M, Guo J, Yang X, et al. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation. Protein Cell. 2021;12:128–44. https://doi.org/10.1007/s13238-020-00760-4.

    CAS 
    Article 

    Google Scholar
     

  • Bibok A, Kim DW, Malafa M, Kis B. Minimally invasive image-guided therapy of primary and metastatic pancreatic cancer. World J Gastroenterol. 2021;27:4322–41. https://doi.org/10.3748/wjg.v27.i27.4322.

    Article 

    Google Scholar
     

  • Iglesia D, Avci B, Kiriukova M, Panic N, Bozhychko M, Sandru V, et al. Pancreatic exocrine insufficiency and pancreatic enzyme replacement therapy in patients with advanced pancreatic cancer: A systematic review and meta-analysis. United Eur Gastroenterol J. 2020;8:1115–25. https://doi.org/10.1177/2050640620938987.

    Article 

    Google Scholar
     

  • Bushnell GG, Orbach SM, Ma JA, Crawford HC, Wicha MS, Jeruss JS, et al. Disease-induced immunomodulation at biomaterial scaffolds detects early pancreatic cancer in a spontaneous model. Biomaterials. 2021;269:120632. https://doi.org/10.1016/j.biomaterials.2020.120632.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li L, Bao J, Wang H, Lei JH, Peng C, Zeng J, et al. Upregulation of amplified in breast cancer 1 contributes to pancreatic ductal adenocarcinoma progression and vulnerability to blockage of hedgehog activation. Theranostics. 2021;11:1672–89. https://doi.org/10.7150/thno.47390.

    CAS 
    Article 

    Google Scholar
     

  • Elaskalani O, Domenichini A, Abdol Razak NB, D ED, Falasca M, Metharom P. Antiplatelet Drug Ticagrelor Enhances Chemotherapeutic Efficacy by Targeting the Novel P2Y12-AKT Pathway in Pancreatic Cancer Cells. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12010250.

  • O’Reilly EM, Hechtman JF. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann Oncol. 2019;30:viii36–40. https://doi.org/10.1093/annonc/mdz385.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Wang JY, Zhou SY, Yang SJ, Zhong SL. Circular RNA expression in pancreatic ductal adenocarcinoma. Oncol Lett. 2019;18:2923–30. https://doi.org/10.3892/ol.2019.10624.

    CAS 
    Article 

    Google Scholar
     

  • Khan N, Mukhtar H. Dietary agents for prevention and treatment of lung cancer. Cancer Lett. 2015;359:155–64. https://doi.org/10.1016/j.canlet.2015.01.038.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zha JH, Xia YC, Ye CL, Hu Z, Zhang Q, Xiao H, et al. The Anti-Non-Small Cell Lung Cancer Cell Activity by a mTOR Kinase Inhibitor PQR620. Front Oncol. 2021;11:669518. https://doi.org/10.3389/fonc.2021.669518.

    Article 

    Google Scholar
     

  • Teng K, Zhang Y, Hu X, Ding Y, Gong R, Liu L. Nimotuzumab enhances radiation sensitivity of NSCLC H292 cells in vitro by blocking epidermal growth factor receptor nuclear translocation and inhibiting radiation-induced DNA damage repair. Onco Targets Ther. 2015;8:809–18. https://doi.org/10.2147/ott.S77283.

    Article 

    Google Scholar
     

  • Lin L, Zhao J, Hu J, Huang F, Han J, He Y, et al. Comparison of the efficacy and tolerability of gefitinib with pemetrexed maintenance after first-line platinum-based doublet chemotherapy in advanced lung adenocarcinoma: single-center experience. Onco Targets Ther. 2016;9:6305–14. https://doi.org/10.2147/ott.S113374.

    Article 

    Google Scholar
     

  • Ardesch FH, Ruiter R, Mulder M, Lahousse L, Stricker BHC, Kiefte-de Jong JC. The Obesity Paradox in Lung Cancer: Associations With Body Size Versus Body Shape. Front Oncol. 2020;10:591110. https://doi.org/10.3389/fonc.2020.591110.

    Article 

    Google Scholar
     

  • Oser MG, Niederst MJ, Sequist LV, Engelman JA. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 2015;16:e165-72. https://doi.org/10.1016/s1470-2045(14)71180-5.

    Article 

    Google Scholar
     

  • Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol 2017;7. https://doi.org/10.1098/rsob.170070.

  • Wahab A, Kesari K, Chaudhary S, Khan M, Khan H, Smith S, et al. Sequential occurrence of small cell and non-small lung cancer in a male patient: Is it a transformation? Cancer Biol Ther. 2017;18:940–3. https://doi.org/10.1080/15384047.2017.1394546.

    CAS 
    Article 

    Google Scholar
     

  • Sun X, Turcan S. From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021;10. https://doi.org/10.3390/cells10051225.

  • Sturm D, Pfister SM, Jones DTW. Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. J Clin Oncol. 2017;35:2370–7. https://doi.org/10.1200/jco.2017.73.0242.

    Article 

    Google Scholar
     

  • Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020;21. https://doi.org/10.3390/ijms21103704.

  • Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 2014;16:896–913. https://doi.org/10.1093/neuonc/nou087.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z, et al. Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett. 2020;479:1–12. https://doi.org/10.1016/j.canlet.2020.03.002.

    CAS 
    Article 

    Google Scholar
     

  • Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res. 2019;38:398. https://doi.org/10.1186/s13046-019-1376-8.

    CAS 
    Article 

    Google Scholar
     

  • Sun J, Li B, Shu C, Ma Q, Wang J. Functions and clinical significance of circular RNAs in glioma. Mol Cancer. 2020;19:34. https://doi.org/10.1186/s12943-019-1121-0.

    CAS 
    Article 

    Google Scholar
     

  • Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 2018;9:4475. https://doi.org/10.1038/s41467-018-06862-2.

    CAS 
    Article 

    Google Scholar
     

  • Du Q, Zhang W, Feng Q, Hao B, Cheng C, Cheng Y, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0001368 is involved in growth hormone-secreting pituitary adenoma development. Brain Res Bull. 2020;161:65–77. https://doi.org/10.1016/j.brainresbull.2020.04.018.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Singh KK, Desouki MM, Franklin RB, Costello LC. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol Cancer. 2006;5:14. https://doi.org/10.1186/1476-4598-5-14.

    CAS 
    Article 

    Google Scholar
     

  • Chen K, Xu H, Zhao J. Bloom Syndrome Protein Activates AKT and PRAS40 in Prostate Cancer Cells. Oxid Med Cell Longev. 2019;2019:3685817. https://doi.org/10.1155/2019/3685817.

    CAS 
    Article 

    Google Scholar
     

  • Mollica V, Di Nunno V, Cimadamore A, Lopez-Beltran A, Cheng L, Santoni M, et al. Molecular Mechanisms Related to Hormone Inhibition Resistance in Prostate Cancer. Cells 2019;8. https://doi.org/10.3390/cells8010043.

  • Xu L, Zhang G, Zhang X, Bai X, Yan W, Xiao Y, et al. External Validation of the Extraprostatic Extension Grade on MRI and Its Incremental Value to Clinical Models for Assessing Extraprostatic Cancer. Front Oncol. 2021;11:655093. https://doi.org/10.3389/fonc.2021.655093.

    Article 

    Google Scholar
     

  • Wang L, Liu X, Liu Z, Wang Y, Fan M, Yin J, et al. Network models of prostate cancer immune microenvironments identify ROMO1 as heterogeneity and prognostic marker. Sci Rep. 2022;12:192. https://doi.org/10.1038/s41598-021-03946-w.

    CAS 
    Article 

    Google Scholar
     

  • Getahun F, Mazengia F, Abuhay M, Birhanu Z. Comprehensive knowledge about cervical cancer is low among women in Northwest Ethiopia. BMC Cancer. 2013;13:2. https://doi.org/10.1186/1471-2407-13-2.

    Article 

    Google Scholar
     

  • Farrand L, Oh SW, Song YS, Tsang BK. Phytochemicals: a multitargeted approach to gynecologic cancer therapy. Biomed Res Int. 2014;2014:890141. https://doi.org/10.1155/2014/890141.

    Article 

    Google Scholar
     

  • Wang G, Liu X, Wang D, Sun M, Yang Q. Identification and Development of Subtypes With Poor Prognosis in Pan-Gynecological Cancer Based on Gene Expression in the Glycolysis-Cholesterol Synthesis Axis. Front Oncol. 2021;11:636565. https://doi.org/10.3389/fonc.2021.636565.

    Article 

    Google Scholar
     

  • Zhang H, Wang S, Cacalano N, Zhu H, Liu Q, Xie M, et al. Oncogenic Y68 frame shift mutation of PTEN represents a mechanism of docetaxel resistance in endometrial cancer cell lines. Sci Rep. 2019;9:2111. https://doi.org/10.1038/s41598-019-38585-9.

    CAS 
    Article 

    Google Scholar
     

  • Li C, Ao H, Chen G, Wang F, Li F. The Interaction of CDH20 With β-Catenin Inhibits Cervical Cancer Cell Migration and Invasion via TGF-β/Smad/SNAIL Mediated EMT. Front Oncol. 2019;9:1481. https://doi.org/10.3389/fonc.2019.01481.

    Article 

    Google Scholar
     

  • Li T, Yang Z, Jiang S, Di W, Ma Z, Hu W, et al. Melatonin: does it have utility in the treatment of haematological neoplasms? Br J Pharmacol. 2018;175:3251–62. https://doi.org/10.1111/bph.13966.

    CAS 
    Article 

    Google Scholar
     

  • Howell DA, Wang HI, Roman E, Smith AG, Patmore R, Johnson MJ, et al. Preferred and actual place of death in haematological malignancy. BMJ Support Palliat Care. 2017;7:150–7. https://doi.org/10.1136/bmjspcare-2014-000793.

    Article 

    Google Scholar
     

  • Auberger P, Tamburini-Bonnefoy J, Puissant A. Drug Resistance in Hematological Malignancies. Int J Mol Sci 2020;21. https://doi.org/10.3390/ijms21176091.

  • Deshantri AK, Varela Moreira A, Ecker V, Mandhane SN, Schiffelers RM, Buchner M, et al. Nanomedicines for the treatment of hematological malignancies. J Control Release. 2018;287:194–215. https://doi.org/10.1016/j.jconrel.2018.08.034.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jin MW, Xu SM, An Q, Wang P. A review of risk factors for childhood leukemia. Eur Rev Med Pharmacol Sci. 2016;20:3760–4.

    PubMed 

    Google Scholar
     

  • Li AJ, Dhanraj JP, Lopes G, Parker JL. Clinical trial risk in leukemia: Biomarkers and trial design. Hematol Oncol. 2021;39:105–13. https://doi.org/10.1002/hon.2818.

    Article 

    Google Scholar
     

  • Zhao H, Wang D, Du W, Gu D, Yang R. MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol. 2010;74:149–55. https://doi.org/10.1016/j.critrevonc.2009.05.001.

    Article 

    Google Scholar
     

  • Morelli MB, Liberati S, Amantini C, Nabiss M, Santoni M, Farfariello V, et al. Expression and function of the transient receptor potential ion channel family in the hematologic malignancies. Curr Mol Pharmacol. 2013;6:137–48. https://doi.org/10.2174/187446720603140415215431.

    CAS 
    Article 

    Google Scholar
     

  • Battistello E, Katanayeva N, Dheilly E, Tavernari D, Donaldson MC, Bonsignore L, et al. Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma. Blood. 2018;131:2345–56. https://doi.org/10.1182/blood-2017-10-809210.

    CAS 
    Article 

    Google Scholar
     

  • Zhu J, Yang Y, Tao J, Wang SL, Chen B, Dai JR, et al. Association of progression-free or event-free survival with overall survival in diffuse large B-cell lymphoma after immunochemotherapy: a systematic review. Leukemia. 2020;34:2576–91. https://doi.org/10.1038/s41375-020-0963-1.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caramuta S, Lee L, Ozata DM, Akçakaya P, Georgii-Hemming P, Xie H, et al. Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J. 2013;3:e152. https://doi.org/10.1038/bcj.2013.49.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateu-Sanz M, Tornín J, Brulin B, Khlyustova A, Ginebra MP, Layrolle P, et al. Cold Plasma-Treated Ringer’s Saline: A Weapon to Target Osteosarcoma. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12010227.

  • Lagmay JP, Krailo MD, Dang H, Kim A, Hawkins DS, Beaty O 3. Outcome of Patients With Recurrent Osteosarcoma Enrolled in Seven Phase II Trials Through Children’s Cancer Group, Pediatric Oncology Group, and Children’s Oncology Group: Learning From the Past to Move Forward. J Clin Oncol. 2016;34:3031–8. https://doi.org/10.1200/jco.2015.65.5381. rd, et al.

    Article 

    Google Scholar
     

  • Lallier M, Marchandet L, Moukengue B, Charrier C, Baud’huin M, Verrecchia F, et al. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells 2021;10. https://doi.org/10.3390/cells10040754.

  • Hou CH, Lin FL, Hou SM, Liu JF. Cyr61 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by Raf-1/MEK/ERK/Elk-1/TWIST-1 signaling pathway. Mol Cancer. 2014;13:236. https://doi.org/10.1186/1476-4598-13-236.

    Article 

    Google Scholar
     

  • Li C, Cai J, Ge F, Wang G. TGM2 knockdown reverses cisplatin chemoresistance in osteosarcoma. Int J Mol Med. 2018;42:1799–808. https://doi.org/10.3892/ijmm.2018.3753.

    CAS 
    Article 

    Google Scholar
     

  • Wen JF, Jiang YQ, Li C, Dai XK, Wu T, Yin WZ. LncRNA-SARCC sensitizes osteosarcoma to cisplatin through the miR-143-mediated glycolysis inhibition by targeting Hexokinase 2. Cancer Biomark. 2020;28:231–46. https://doi.org/10.3233/cbm-191181.

    Article 

    Google Scholar
     

  • Yong L, Ma Y, Liang C, He G, Zhao Z, Yang C, et al. Oleandrin sensitizes human osteosarcoma cells to cisplatin by preventing degradation of the copper transporter 1. Phytother Res. 2019;33:1837–50. https://doi.org/10.1002/ptr.6373.

    CAS 
    Article 

    Google Scholar
     

  • Guo J, Dou D, Zhang T, Wang B. HOTAIR Promotes Cisplatin Resistance of Osteosarcoma Cells by Regulating Cell Proliferation, Invasion, and Apoptosis via miR-106a-5p/STAT3 Axis. Cell Transpl. 2020;29:963689720948447. https://doi.org/10.1177/0963689720948447.

    Article 

    Google Scholar
     

  • Yang D, Xu T, Fan L, Liu K, Li G. microRNA-216b enhances cisplatin-induced apoptosis in osteosarcoma MG63 and SaOS-2 cells by binding to JMJD2C and regulating the HIF1α/HES1 signaling axis. J Exp Clin Cancer Res. 2020;39:201. https://doi.org/10.1186/s13046-020-01670-3.

    CAS 
    Article 

    Google Scholar
     

  • Zhang L, Wang Y, Li X, Xia X, Li N, He R, et al. ZBTB7A Enhances Osteosarcoma Chemoresistance by Transcriptionally Repressing lncRNALINC00473-IL24 Activity. Neoplasia. 2017;19:908–18. https://doi.org/10.1016/j.neo.2017.08.008.

    CAS 
    Article 

    Google Scholar
     

  • Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C, Shindo H, et al. Indications and Strategy for Active Surveillance of Adult Low-Risk Papillary Thyroid Microcarcinoma: Consensus Statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. Thyroid. 2021;31:183–92. https://doi.org/10.1089/thy.2020.0330.

    Article 

    Google Scholar
     

  • Yang Z, Wei X, Pan Y, Xu J, Si Y, Min Z, et al. A new risk factor indicator for papillary thyroid cancer based on immune infiltration. Cell Death Dis. 2021;12:51. https://doi.org/10.1038/s41419-020-03294-z.

    CAS 
    Article 

    Google Scholar
     

  • Cao Y, Zhong X, Diao W, Mu J, Cheng Y, Jia Z. Radiomics in Differentiated Thyroid Cancer and Nodules: Explorations, Application, and Limitations. Cancers (Basel). 2021;13. https://doi.org/10.3390/cancers13102436.

  • Xu B, Ibrahimpasic T, Wang L, Sabra MM, Migliacci JC, Tuttle RM, et al. Clinicopathologic Features of Fatal Non-Anaplastic Follicular Cell-Derived Thyroid Carcinomas. Thyroid. 2016;26:1588–97. https://doi.org/10.1089/thy.2016.0247.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loehrer AP, Murthy SS, Song Z, Lubitz CC, James BC. Association of Insurance Expansion With Surgical Management of Thyroid Cancer. JAMA Surg. 2017;152:734–40. https://doi.org/10.1001/jamasurg.2017.0461.

    Article 

    Google Scholar
     

  • Li S, Chen C, Xiong X, Huang Y, Hu J, Fan Z, et al. Type Iγ phosphatidylinositol phosphate kinase dependent cell migration and invasion are dispensable for tumor metastasis. Am J Cancer Res. 2019;9:959–74.


    Google Scholar
     

  • Hu PC, Li K, Tian YH, Pan WT, Wang Y, Xu XL, et al. CREB1/Lin28/miR-638/VASP Interactive Network Drives the Development of Breast Cancer. Int J Biol Sci. 2019;15:2733–49. https://doi.org/10.7150/ijbs.36854.

    CAS 
    Article 

    Google Scholar
     

  • Chen Y, Chen L, Zhang JY, Chen ZY, Liu TT, Zhang YY, et al. Oxymatrine reverses epithelial-mesenchymal transition in breast cancer cells by depressing α(V)β(3) integrin/FAK/PI3K/Akt signaling activation. Onco Targets Ther. 2019;12:6253–65. https://doi.org/10.2147/ott.S209056.

    Article 

    Google Scholar
     

  • Chen H, Sun Y, Yang Z, Yin S, Li Y, Tang M, et al. Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncol Rep. 2021;45:846–56. https://doi.org/10.3892/or.2021.7946.

    CAS 
    Article 

    Google Scholar
     

  • Colombino M, Paliogiannis P, Cossu A, De Re V, Miolo G, Botti G, et al. BRAF Mutations and Dysregulation of the MAP Kinase Pathway Associated to Sinonasal Mucosal Melanomas. J Clin Med 2019;8. https://doi.org/10.3390/jcm8101577.

  • Katsarelias D, Eriksson H, Mikiver R, Krakowski I, Nilsson JA, Ny L, et al. The Effect of Beta-Adrenergic Blocking Agents in Cutaneous Melanoma-A Nation-Wide Swedish Population-Based Retrospective Register Study. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12113228.

  • Vogelsang M, Wilson M, Kirchhoff T. Germline determinants of clinical outcome of cutaneous melanoma. Pigment Cell Melanoma Res. 2016;29:15–26. https://doi.org/10.1111/pcmr.12418.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kwiatkowska-Borowczyk E, Czerwińska P, Mackiewicz J, Gryska K, Kazimierczak U, Tomela K, et al. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology. 2018;7:e1509821. https://doi.org/10.1080/2162402x.2018.1509821.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang L, Long J, Li K, Zhang X, Chen X, Peng C. A novel chalcone derivative suppresses melanoma cell growth through targeting Fyn/Stat3 pathway. Cancer Cell Int. 2020;20:256. https://doi.org/10.1186/s12935-020-01336-2.

    CAS 
    Article 

    Google Scholar
     

  • Zhang Y, Ma JA, Zhang HX, Jiang YN, Luo WH. Cancer vaccines: Targeting KRAS-driven cancers. Expert Rev Vaccines. 2020;19:163–73. https://doi.org/10.1080/14760584.2020.1733420.

    CAS 
    Article 

    Google Scholar
     

  • Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD. Tumor-Treating Fields: A Fourth Modality in Cancer Treatment. Clin Cancer Res. 2018;24:266–75. https://doi.org/10.1158/1078-0432.Ccr-17-1117.

    Article 

    Google Scholar
     

  • Maida M, Macaluso FS, Ianiro G, Mangiola F, Sinagra E, Hold G, et al. Screening of colorectal cancer: present and future. Expert Rev Anticancer Ther. 2017;17:1131–46. https://doi.org/10.1080/14737140.2017.1392243.

    CAS 
    Article 

    Google Scholar
     

  • Shieh Y, Eklund M, Sawaya GF, Black WC, Kramer BS, Esserman LJ. Population-based screening for cancer: hope and hype. Nat Rev Clin Oncol. 2016;13:550–65. https://doi.org/10.1038/nrclinonc.2016.50.

    CAS 
    Article 

    Google Scholar
     

  • Mascaux C, Peled N, Garg K, Kato Y, Wynes MW, Hirsch FR. Early detection and screening of lung cancer. Expert Rev Mol Diagn. 2010;10:799–815. https://doi.org/10.1586/erm.10.60.

    Article 
    PubMed 

    Google Scholar
     

  • Tian JY, Guo FJ, Zheng GY, Ahmad A. Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis. 2018;39:307–17. https://doi.org/10.1093/carcin/bgx141.

    CAS 
    Article 

    Google Scholar
     

  • Greenwald ZR, El-Zein M, Bouten S, Ensha H, Vazquez FL, Franco EL. Mobile Screening Units for the Early Detection of Cancer: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2017;26:1679–94. https://doi.org/10.1158/1055-9965.Epi-17-0454.

    Article 

    Google Scholar
     

  • Lindquist D, Kvarnbrink S, Henriksson R, Hedman H. LRIG and cancer prognosis. Acta Oncol. 2014;53:1135–42. https://doi.org/10.3109/0284186x.2014.953258.

    Article 

    Google Scholar
     

  • Sidders B, Zhang P, Goodwin K, O’Connor G, Russell DL, Borodovsky A, et al. Adenosine Signaling Is Prognostic for Cancer Outcome and Has Predictive Utility for Immunotherapeutic Response. Clin Cancer Res. 2020;26:2176–87. https://doi.org/10.1158/1078-0432.Ccr-19-2183.

    Article 

    Google Scholar
     

  • Poorvu PD, Gelber SI, Rosenberg SM, Ruddy KJ, Tamimi RM, Collins LC, et al. Prognostic Impact of the 21-Gene Recurrence Score Assay Among Young Women With Node-Negative and Node-Positive ER-Positive/HER2-Negative Breast Cancer. J Clin Oncol. 2020;38:725–33. https://doi.org/10.1200/jco.19.01959.

    CAS 
    Article 

    Google Scholar
     

  • Cobain EF, Hayes DF. Indications for prognostic gene expression profiling in early breast cancer. Curr Treat Options Oncol. 2015;16:23. https://doi.org/10.1007/s11864-015-0340-x.

    Article 
    PubMed 

    Google Scholar
     

  • Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 2014;25:61–8. https://doi.org/10.1016/j.semcancer.2014.02.006.

    CAS 
    Article 

    Google Scholar
     

  • Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12:90. https://doi.org/10.1186/s13045-019-0776-8.

    CAS 
    Article 

    Google Scholar
     

  • Hua JT, Chen S, He HH. Landscape of Noncoding RNA in Prostate Cancer. Trends Genet. 2019;35:840–51. https://doi.org/10.1016/j.tig.2019.08.004.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)