• Cárdenas J, Lazcano M, Ossandon F, Corbett M, Holmes D, Watkin E. Draft genome sequence of the iron-oxidizing acidophile Leptospirillum ferriphilum type strain DSM 14647. Genome Announc. 2014;2:e01153-e1214.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jones GC, Corin KC, Van Hille RP, Harrison STL. The generation of toxic reactive oxygen species (ROS) from mechanically activated sulphide concentrates and its effect on thermophilic bioleaching. Miner Eng. 2011;24(11):1198–208.

    CAS 
    Article 

    Google Scholar
     

  • Ferrer A, Rivera J, Zapata C, Norambuena J, Sandoval A, Chávez R, Orellana O, Levicán G. Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1. Front Microbiol. 2016;7:748.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. Osmotic imbalance, cytoplasm acidification and oxidative stress induction support the high toxicity of chloride in acidophilic bacteria. Front Microbiol. 2019;10:2455.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Christel S, Herold M, Bellenberg S, El Hajjami M, Buetti-Dinh A, Pivkin IV, Sand W, Wilmes P, Poetsch A, Dopson M. Multi-omics reveals the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum. Appl Environ Microbiol. 2018;84:e02091-e2117.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • González D, Álamos P, Rivero M, Orellana O, Norambuena J, Chávez R, Levicán G. Deciphering the role of multiple thioredoxin fold proteins of Leptospirillum sp. in oxidative stress tolerance. Int J Mol Sci. 2020;21(5):1880.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Contreras M, Mascayano M, Chávez R, Ferrer A, Paillavil B, Levicán G. Dyp-type peroxidase (DypA) from the bioleaching acidophilic bacterium Leptospirillum ferriphilum DSM 14647. Adv Mater Res. 2015;1130:23–7.

    Article 

    Google Scholar
     

  • Zapata C, Paillavil B, Chávez R, Álamos P, Levicán G. Cytochrome c peroxidase (CcP) is a molecular determinant of the oxidative stress response in the extreme acidophilic Leptospirillum sp. CF-1. FEMS Microbiol Ecol. 2017;93:fix001.

    Article 
    CAS 

    Google Scholar
     

  • Ferrer A, Bunk B, Spröer C, Biedendieck R, Valdés N, Jahn M, Jahn D, Orellana O, Levicán G. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1. J Biotechnol. 2016;222:21–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao L, Pei G, Chen L, Zhang W. A global network-based protocol for functional inference of hypothetical proteins in Synechocystis sp. PCC 6803. J Microbiol Methods. 2015;116:44–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doerks T, Van Noort V, Minguez P, Bork P. Annotation of the M. tuberculosis hypothetical orfeome: adding functional information to more than half of the uncharacterized proteins. PLoS ONE. 2012;7: e34302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Galperin MY, Koonin EV. ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res. 2004;32:5452–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics. 2008;9:1–24.

    Article 
    CAS 

    Google Scholar
     

  • Camacho D, Frazao R, Fouillen A, Nanci A, Lang BF, Apte SC, Baron C, Warren LA. New insights into Acidithiobacillus thiooxidans sulfur metabolism through coupled gene expression, solution chemistry, microscopy, and spectroscopy analyses. Front Microbiol. 2020;11:411.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cárdenas J, Moya F, Covarrubias P, Shmaryahu A, Levicán G, Holmes D, Quatrini R. Comparative genomics of the oxidative stress response in bioleaching microorganisms. Hydrometallurgy. 2012;127–128:162–7.

    Article 
    CAS 

    Google Scholar
     

  • Moya-Beltrán A, Cárdenas P, Covarrubias PC, Issotta F, Ossandon FJ, Grail BM, Holmes DS, Quatrini R, Johnson DB. Draft genome sequence of the nominated type strain of “Ferrovum myxofaciens”, an acidophilic, iron-oxidizing Betaproteobacterium. Genome Announc. 2014;2:2013–4.

    Article 

    Google Scholar
     

  • Shidhi PR, Nair AS, Suravajhala P. Identifying pseudogenes from hypothetical proteins for making synthetic proteins. Syst Synth Biol. 2014;8(2):169–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bork P. Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res. 2000;10(4):398–400.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koonin E, Galperin M. Sequence – Evolution – Function: computational approaches in comparative genomis. Boston: Kluwer Academic; 2003.

    Book 

    Google Scholar
     

  • Yelton AP, Thomas BC, Simmons SL, Wilmes P, Zemla A, Thelen MP, Justice N, Banfield JF. A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes. PLoS Comput Biol. 2011;7(10): e1002230.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Islam S, Shahik S, Sohel M, Patwary N, Hasan A. In silico structural and functional annotation of hypothetical proteins of Vibrio cholerae O139. Genomics Inform. 2015;13(2):53–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • School K, Markleivits J, Schram W, Harris L. Predictive characterization of hypothetical proteins in Staphylococcus aureus NCTC 8325. Bioinformation. 2016;12(3):209–20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singh G, Singh V. Functional elucidation of hypothetical proteins for their indispensable roles toward drug designing targets from Helicobacter pylori strain HPAG1. J Biomol Struct Dyn. 2017;36(4):906–18.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Farías R, Norambuena J, Ferrer A, Camejo P, Zapata C, Chávez R, Orellana O, Levicán G. Redox stress response and UV tolerance in the acidophilic iron-oxidizing bacteria Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Res Microbiol. 2021;172(3): 103833.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Morino M, Suzuki T, Ito M, Krulwich TA. Purification and functional reconstitution of a seven-subunit Mrp-Type Na+/H+ antiporter. J Bacteriol. 2014;196(1):28–35.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ito M, Morino M, Krulwich TA. Mrp antiporters have important roles in diverse bacteria and archaea. Front Microbiol. 2017;8:2325.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, Wilson IA, Godzik A. Exploration of uncharted regions of the protein universe. PLoS Biol. 2009;7(9): e1000205.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fujimoto T, Inaba K, Kadokura H. Methods to identify the substrates of thiol-disulfide oxidoreductases. Protein Sci. 2018;28(1):30–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Lee SB. Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus. J Biochem. 2006;139(3):591–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L. Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. App Environ Microbiol. 2002;68(5):2246–50.

    CAS 
    Article 

    Google Scholar
     

  • Shah SS, Damare S. Proteomic response of marine-derived Staphylococcus cohnii NIOSBK35 to varying Cr (VI) concentrations. Metallomics. 2019;11(9):1465–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal. 2010;13:1231–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C. Mechanisms of bacterial resistance to chromium compounds. Biometals. 2008;21:321–32.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sturm G, Brunner S, Suvorova E, Dempwolff F, Reiner J, Graumann P, Bernier- Latmani R, Majzlan J, Gescher J. Chromate resistance mechanisms in Leucobacter chromiiresistens. Appl Environ Microbiol. 2018;84:e02208-e2218.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol. 1992;174:5340–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanmani P, Aravind J, Preston D. Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol. 2012;9:183–93.

    CAS 
    Article 

    Google Scholar
     

  • Sobol Z, Schiestl RH. Intracellular and extracellular factors influencing Cr(VI and Cr(III) genotoxicity. Environ Mol Mutagen. 2012;53:94–100.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A. The chromate- inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol. 2008;190:6996–7003.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C. Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol. 2006;11:82–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol. 2006;72:1988–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gnanamani A, Kavitha V, Radhakrishnan N, Rajakumar GS, Sekaran G, Mandal AB. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B Biointerfaces. 2010;79:334–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Belchik SM, Kennedy DW, Dohnalkova AC, Wang YM, Sevinc PC, Wu H, Lin YH, Lu HP, Fredrickson JK, Shi L. Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol. 2011;77:4035–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chovanec P, Sparacino-Watkins C, Zhang N, Basu P, Stolz JF. Microbial reduction of chromate in the presence of nitrate by three nitrate respiring organisms. Front Microbiol. 2012;3:416.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol. 2004;6:851–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol. 2004;70:873–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng YJ, Xie YM, Zheng J, Wu ZX, Chen Z, Ma XY, Li B, Lin Z. Identification and characterization of the chromium (VI) responding protein from a newly isolated Ochrobactrum anthropi CTS-325. J Environ Sci China. 2009;21:1673–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Llagostera M, Guerrero Garrido S, R, Barbe J,. Induction of SOS genes of Escherichia coli by chromium compounds. Environ Mutagen. 1986;8:571–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol. 2005;187:8437–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miranda AT, Gonzalez MV, Gonzalez G, Vargas E, Campos-Garcia J, Cervantes C. Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res. 2005;578:202–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Decorosi F, Tatti E, Mini A, Giovannetti L, Viti C. Characterization of two genes involved in chromate resistance in a Cr(VI)-hyper-resistant bacterium. Extremophiles. 2009;13:917–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baillet F, Magnin JP, Cheruy A, Ozil P. Chromium precipitation by the acidophilic bacterium Thiobacillus ferrooxidans. Biotechnol Lett. 1998;20(1):95–9.

    CAS 
    Article 

    Google Scholar
     

  • Magnuson TS, Swenson MW, Paszczynski AJ, Deobald LA, Kerk D, Cummings DE. Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile. Biometals. 2010;23(6):1129–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sambrook JF, Russell DW. Molecular cloning a laboratory manual, vol. 1. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.


    Google Scholar
     

  • Davidson JF, Whyte B, Bissinger PH, Schiestl RH. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996;93:5116–21.

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. New and continuing developments at PROSITE. Nucleic Acids Res. 2012;41:D344–7.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Servant F, Bru C, Carrère S, Courcelle E, Gouzy J, Peyruc D, Kahn D. ProDom: automated clustering of homologous domains. Brief Bioinform. 2002;3:246–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bjellqvist B, Hughes GJ, Pasquali Ch, Paquet N, Ravier F, Sanchez JCh, Frutiger S, Hochstrasser DF. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis. 1993;14:1023–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England). 2010;26(13):1608–15.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)