• Ahsan R, Ibrahimy MI. EMG signal classification for human computer interaction: a review. Eur J Sci Res. 2009;33(3):480–501.


    Google Scholar
     

  • Aoi S, Ogihara N, Funato T, Sugimoto Y, Tsuchiya K. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biol Cybern. 2010;102:373–87.

    PubMed 
    Article 

    Google Scholar
     

  • Asghari Oskoei M, Hu H. Myoelectric control systems—a survey. Biomed Signal Process Control. 2007;2(4):275–94.

    Article 

    Google Scholar
     

  • Atkins DJ, Donovan WH. Retrospective analysis of 87 children and adults fitted with electric prosthetic componentry. Arch Phys Med Rehabil. 1992;73(10):960.


    Google Scholar
     

  • Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw J. 2008;21:654–66.

    Article 

    Google Scholar
     

  • Au SK, Bonato P, Herr H. An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005, Chicago, IL, USA. IEEE; 2005. p. 375–9.

  • Au SK, Dilworth P, Herr H. An ankle-foot emulation system for the study of human walking biomechanics. In: Proceedings of the IEEE international conference on robotics and automation, Orlando, FL, USA. IEEE; 2006. p. 2939–45.

  • Behr J, Friedly J, Molton I, Morgenroth D, Jensen MP, Smith DG. Pain and pain-related interference in adults with lower-limb amputation: comparison of knee-disarticulation, transtibial, and transfemoral surgical sites. J Rehabil Res Dev. 2009;46(7):963–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Biddiss E, Chau T. Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabilit. 2007;86(12):977–87.

    Article 

    Google Scholar
     

  • Bohannon RW. Number of pedometer-assessed steps taken per day by adults: a descriptive meta-analysis. Phys Ther. 2007;87(12):1642–50.

    PubMed 
    Article 

    Google Scholar
     

  • Brantley JA, Luu TP, Nakagome S, Contreras-Vidal JL. Prediction of lower-limb joint kinematics from surface EMG during overground locomotion. In: IEEE, editor. 2017 IEEE international conference on systems, man, and cybernetics, SMC 2017, Banff, Canada. 2017. p. 1705–9.

  • Burke MJ, Roman V, Wright V. Bone and joint changes in lower limb amputees. Ann Rheum Dis. 1978;37(3):252–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burrough SF, Brook JA. Patterns of acceptance and rejection of upper limb prostheses. Orthot Prosthet. 1985;39(2):40–7.


    Google Scholar
     

  • Canino JM, Fite KB. Haptic feedback in lower-limb prosthesis: combined haptic feedback and EMG control of a powered prosthesis. In: 2016 IEEE EMBS international student conference (ISC), Ottawa, ON, Canada. IEEE; 2016. p. 1–4.

  • Cao Y, Gao F, Yu L, She Q. Gait recognition based on emg information with multiple features. IFIP Adv Inf Commun Technol. 2018;538:402–11.

    Article 

    Google Scholar
     

  • Chen B, Wang Q, Wang L. Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, EMBC 2014. 2014. p. 2545–8.

  • Chen B, Wang Q, Wang L. Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control. IEEE/ASME Trans Mechatron. 2015;20(5):2146–57.

    Article 

    Google Scholar
     

  • Ciaccio EJ, Akay M, Dunn SM. Biosignal pattern recognition and interpretation systems. IEEE Eng Med Biol Mag. 1993;12(3):89–95.

    Article 

    Google Scholar
     

  • Cimolato A, Milandri G, Mattos LS, De Momi E, Laffranchi M, De Michieli L. Hybrid machine learning-neuromusculoskeletal modeling for control of lower limb prosthetics. In: Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics, vol. 2020-Novem. 2020. p. 557–63.

  • Cohen AH, Boothe DL. Sensorimotor interactions during locomotion: principles derived from biological systems. Auton Robot. 1999;7(3):239–45.

    Article 

    Google Scholar
     

  • Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, Zollo L. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10(209):1–14.


    Google Scholar
     

  • Côté-Allard U, Campbell E, Phinyomark A, Laviolette F, Gosselin B, Scheme E. Interpreting deep learning features for myoelectric control: a comparison with handcrafted features. Front Bioeng Biotechnol. 2020;8(March):1–22.


    Google Scholar
     

  • Dawley JA, Fite KB, Fulk GD. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function. In: 2013 IEEE international conference on rehabilitation robotics (ICORR). 2013. p. 1–6.

  • Delis AL, Carvalho JL, Da Rocha AF, Ferreira RU, Rodrigues SS, Borges GA. Estimation of the knee joint angle from surface electromyographic signals for active control of leg prostheses. Physiol Meas. 2009;30(9):931–46.

    PubMed 
    Article 

    Google Scholar
     

  • Delis AL, De Carvalho JLA, Borges GA, De Rodrigues SS, Dos Santos I, Da Rocha AF. Fusion of electromyographic signals with proprioceptive sensor data in myoelectric pattern recognition for control of active transfemoral leg prostheses. In: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society: engineering the future of biomedicine, EMBC 2009. 2009. p. 4755–8.

  • Delis AL, De Carvalho JLA, Da Rocha AF, De Oliveira Nascimento FA, Borges GA. Knee angle estimation algorithm for myoelectric control of active transfemoral prostheses. Commun Comput Inf Sci. 2010;52:124–35.


    Google Scholar
     

  • Delis AL, De Carvalho JLA, Seisdedos CV, Borges GA, Da Rocha AF. Myoelectric control algorithms for leg prostheses based on data fusion with proprioceptive sensors. In: Proceedings ISSNIP biosignals and biorobotics conference, January. 2010. p. 137–42.

  • Dillingham TR, Pezzin LE, MacKenzie EJ. Limb amputation and limb deficiency. South Med J. 2002;95(8):875–83.

    PubMed 

    Google Scholar
     

  • Donath M. Proportional EMG control for above knee prostheses. Ph.D. thesis, Massachusetts Institute of Technology; 1974.

  • Drew T, Kalaska J, Krouchev N. Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol. 2008;586(5):1239–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Drew T, Marigold DS. Taking the next step: cortical contributions to the control of locomotion. Curr Opin Neurobiol. 2015;33:25–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Du L, Zhang F, He H, Huang H. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka, Japan. IEEE; 2013. p. 1571–4.

  • Du L, Zhang F, Liu M, Huang H. Toward design of an environment-aware adaptive locomotion-mode-recognition system. IEEE Trans Biomed Eng. 2012;59(10):2716–25.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eilenberg MF, Geyer H, Herr H. Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):164–73.

    PubMed 
    Article 

    Google Scholar
     

  • Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng. 2003;50(7):848–54.

    PubMed 
    Article 

    Google Scholar
     

  • Farina D, Vujaklija I, Brånemark R, Bull AM, Dietl H, Graimann B, Hargrove LJ, Hoffmann K-P, Huang HH, Ingvarsson T, et al. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng. 2021. https://doi.org/10.1038/s41551-021-00732-x.

    Article 
    PubMed 

    Google Scholar
     

  • Farmer S, Silver-Thorn B, Voglewede P, Beardsley SA. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis. J Neural Eng. 2014;11(5):1–8.

    Article 

    Google Scholar
     

  • Feinglass J, Brown JL, LoSasso A, Sohn MW, Manheim LM, Shah SJ, Pearce WH. Rates of lower-extremity amputation and arterial reconstruction in the United States, 1979 to 1996. Am J Public Health. 1999;89(8):1222–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fleming A, Huang S, Huang H. Proportional myoelectric control of a virtual inverted pendulum using residual antagonistic muscles: toward voluntary postural control. IEEE Trans Neural Syst Rehabil Eng. 2019;27(7):1473–82.

    PubMed 
    Article 

    Google Scholar
     

  • Fleming A, Huang S, Huang HH. Coordination of voluntary residual muscle contractions in transtibial amputees: a pilot study. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, 2018-July. 2018. p. 2128–31.

  • Fleming A, Stafford N, Huang S, Hu X, Ferris DP, Huang HH. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. J Neural Eng. 2021. https://doi.org/10.1088/1741-2552/ac1176.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fluit R, Prinsen E, Wang S, Van Der Kooij H. A comparison of control strategies in commercial and research knee prostheses. IEEE Trans Biomed Eng. 2019;67(1):277–90.

    PubMed 
    Article 

    Google Scholar
     

  • Frossard L, Laux S, Geada M, Heym PP, Lechler K. Load applied on osseointegrated implant by transfemoral bone-anchored prostheses fitted with state-of-the-art prosthetic components. Clin Biomech. 2021;89: 105457.

    Article 

    Google Scholar
     

  • Gail J. Using administrative healthcare records to identify determinants of amputee residuum outcomes. Doctoral, Walden University; 2017.

  • Gailey R, Allen K, Castles J, Kucharik J, Roeder M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev. 2008;45(1):15–29.

    PubMed 
    Article 

    Google Scholar
     

  • Gailey R, McFarland LV, Cooper RA, Czerniecki J, Gambel JM, Hubbard S, Maynard C, Smith DG, Raya M, Reiber GE. Unilateral lower-limb loss: prosthetic device use and functional outcomes in servicemembers from Vietnam war and OIF/OEF conflicts. J Rehabilit Res Dev. 2010;47(4):317.

    Article 

    Google Scholar
     

  • Geethanjali P. Myoelectric control of prosthetic hands: state-of-the-art review. Med Devices Evid Res. 2016;9:247–55.

    Article 

    Google Scholar
     

  • Ghillebert J, De Bock S, Flynn L, Geeroms J, Tassignon B, Roelands B, Lefeber D, Vanderborght B, Meeusen R, De Pauw K. Guidelines and recommendations to investigate the efficacy of a lower-limb prosthetic device: a systematic review. IEEE Trans Med Robot Bionics. 2019;1(4):279–96.

    Article 

    Google Scholar
     

  • Godlwana L, Nadasan T, Puckree T. Global trends in incidence of lower limb amputation: a review of the literature. S Afr J Physiother. 2008;64(1):8–12.

    Article 

    Google Scholar
     

  • Goldfarb M, Lawson BE, Shultz AH. Realizing the promise of robotic leg prostheses. Sci Transl Med. 2013;5(210):1–5.

    Article 

    Google Scholar
     

  • Gottschalk F. Transfemoral amputation. Clin Orthop Relat Res. 1999;361(361):15–22.

    Article 

    Google Scholar
     

  • Grimmer M, Seyfarth A. Chapter 5: Mimicking human-like leg function in prosthetic limbs. In: Artemiadis P, editor. Neuro-robotics, vol. 2. Trends in augmentation of human performance. Darmstadt: Springer Science+Business Media; 2014. p. 105–55.

    Chapter 

    Google Scholar
     

  • Guo X, Chen L, Zhang Y, Yang P, Zhang L. A study on control mechanism of above knee robotic prosthesis based on CPG model. In: 2010 IEEE international conference on robotics and biomimetics (ROBIO), Tianjin, China. IEEE; 2010. p. 283–7.

  • Gupta R, Agarwal R. Continuous human locomotion identification for lower limb prosthesis control. CSI Trans ICT. 2018;6(1):17–31.

    Article 

    Google Scholar
     

  • Gupta R, Agarwal R. Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis. Biocybern Biomed Eng. 2019;39(3):775–88.

    Article 

    Google Scholar
     

  • Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng. 2011;58(1):144–51.

    PubMed 
    Article 

    Google Scholar
     

  • Hargrove LJ, Simon AM, Lipschutz R, Finucane SB, Kuiken TA. Non-weight-bearing neural control of a powered transfemoral prosthesis. J Neuroeng Rehabil. 2013;10(1):62.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hargrove LJ, Simon AM, Young AJ, Lipschutz RD, Finucane SB, Smith DG, Kuiken TA. Robotic leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med. 2013;369(13):1237–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hargrove LJ, Young AJ, Simon AM, Fey NP, Lipschutz RD, Finucane SB, Halsne EG, Ingraham KA, Kuiken TA. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial. JAMA. 2015;313(22):2244–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hof AL, van Bockel RM, Schoppen T, Postema K. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees. Gait Posture. 2007;25(2):250–8.

    PubMed 
    Article 

    Google Scholar
     

  • Hoover CD, Fite KB. A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis. In: 2011 IEEE international conference on rehabilitation robotics (ICORR), Zurich, Switzerland. IEEE; 2011. p. 1–6.

  • Hoover CD, Fulk GD, Fite KB. Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. IEEE/ASME Trans Mechatron. 2012;18(3):1191–200.

    Article 

    Google Scholar
     

  • Hoover CD, Fulk GD, Fite KB. The design and initial experimental validation of an active myoelectric transfemoral prosthesis. J Med Devices. 2012;6(1): 011005.

    Article 

    Google Scholar
     

  • Horn GW. Electro-control: am EMG-controlled A/K prosthesis. Med Biol Eng. 1972;10(1):61–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang H, Kuiken TA, Member S, Lipschutz RD. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng. 2009;56(1):65–73.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular—mechanical fusion. IEEE Trans Biomed Eng. 2011;58(10):2867–75.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang S, Wensman JP, Ferris DP. An experimental powered lower limb prosthesis using proportional myoelectric control. J Med Devices Trans ASME. 2014;8(2):1–5.


    Google Scholar
     

  • Huang S, Wensman JP, Ferris DP. Locomotor adaptation by transtibial amputees walking with an experimental powered prosthesis under continuous myoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2016;24(5):573–81.

    PubMed 
    Article 

    Google Scholar
     

  • Jiménez-Fabián R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012;34(4):397–408.

    PubMed 
    Article 

    Google Scholar
     

  • Jin D, Zhang R, Zhang J, Wang R, Gruver W. An intelligent above-knee prosthesis with EMG-based terrain Identification. In: 2000 IEEE international conference on systems, man, and cybernetics, vol. 3, Nashville, TN, USA. IEEE; 2000. p. 1859–64.

  • Kannape OA, Herr HM. Volitional control of ankle plantar flexion in a powered transtibial prosthesis during stair-ambulation. In: 36th annual international conference of the IEEE engineering in medicine and biology society, Chicago, IL, USA. IEEE; 2014. p. 1662–5.

  • Kannape OA, Herr HM. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Orlando, FL, USA. IEEE; 2016. p. 5469–72.

  • Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Konrad P. The ABC of EMG, vol. 1. 1.4. Scottsdale: Noxar INC.; 2005.


    Google Scholar
     

  • Kusljugic A, Kapidzic-Durakovic S, Kudumovic Z, Cickusic A. Chronic low back pain in individuals with lower-limb amputation. Bosn J Basic Med Sci. 2006;6(2):67–70.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jacob T, Saini LM, Bhaumick S. An algorithm for control of prosthetic foot by gait characteristics. In: Proceeding in international conference on energy, communication, data analytics and soft computing. IEEE; 2017. p. 3552–6.

  • Latham PE, Nirenberg S. Synergy, redundancy, and independence in population codes, revisited. J Neurosci. 2005;25(21):5195–206.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lendaro E, Mastinu E, Håkansson B, Ortiz-Catalan M. Real-time classification of non-weight bearing lower-limb movements using EMG to facilitate phantom motor execution: engineering and case study application on phantom limb pain. Front Neurol. 2017;8(SEP):1–12.


    Google Scholar
     

  • Li W, Sadigh D, Shankar Sastry S, Seshia SA. Synthesis for human-in-the-loop control systems. In: Erika Á, Havelund K, editors. International conference on tools and algorithms for the construction and analysis of systems. Berlin: Springer; 2014. p. 470–84.


    Google Scholar
     

  • Lotze M, Grodd W, Birbaumer N, Erb M, Huse E, Flor H. Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci. 1999;2(6):501–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther. 2002;82(1):69–83.

    PubMed 
    Article 

    Google Scholar
     

  • Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA. Afferent control of locomotor CPG: insights from a simple neuromechanical model. Ann N Y Acad Sci. 2010;1198(1):21–34.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Markowitz J, Krishnaswamy P, Eilenberg MF, Endo K, Barnhart C, Herr H. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model. Philos Trans R Soc B Biol Sci. 2011;366(1570):1621–31.

    Article 

    Google Scholar
     

  • Martin J, Pollock A, Hettinger J. Microprocessor lower limb prosthetics: review of current state of the art. J Orthot Prosthet. 2010;22(3):183–93.

    Article 

    Google Scholar
     

  • Meng M, Luo Z, She Q, Ma Y. Automatic recognition of gait mode from EMG signals of lower limb. In: ICIMA 2010–2010 2nd international conference on industrial mechatronics and automation, vo. 1. 2010. p. 282–5.

  • Miller JD, Beazer MS, Hahn ME. Myoelectric walking mode classification for transtibial amputees. IEEE Trans Biomed Eng. 2013;60(10):2745–50.

    PubMed 
    Article 

    Google Scholar
     

  • Miller JD, Seyedali M, Hahn ME. Walking mode classification from myoelectric and inertial fusion. In: ASME, editor. Proceedings of ASME 2012 summer bioengineering conference, Fajardo, Puerto Rico. 2012. p. 2–3.

  • Miller WC, Deathe AB, Speechley M, Koval J. The influence of falling, fear of falling, and balance confidence on prosthetic mobility and social activity among individuals with a lower extremity amputation. Arch Phys Med Rehabil. 2001;82(9):1238–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miller WC, Speechley M, Deathe AB. Balance confidence among people with lower-limb amputations. Phys Ther. 2002;82(9):856–65.

    PubMed 
    Article 

    Google Scholar
     

  • Moxey PW, Gogalniceanu P, Hinchliffe RJ, Loftus IM, Jones KJ, Thompson MM, Holt PJ. Lower extremity amputations—a review of global variability in incidence. Diabet Med. 2011;28(10):1144–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mudie KL, Boynton AC, Karakolis T, O’Donovan MP, Kanagaki GB, Crowell HP, Begg RK, LaFiandra ME, Billing DC. Consensus paper on testing and evaluation of military exoskeletons for the dismounted combatant. J Sci Med Sport. 2018;21(11):1154–61.

    PubMed 
    Article 

    Google Scholar
     

  • Naschitz JE, Lenger R. Why traumatic leg amputees are at increased risk for cardiovascular diseases. Q J Med. 2008;101(4):251–9.

    CAS 
    Article 

    Google Scholar
     

  • Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10(3):229–58.

    PubMed 
    Article 

    Google Scholar
     

  • Nazmi N, Abdul Rahman M, Yamamoto S-I, Ahmad S, Zamzuri H, Mazlan S. A review of classification techniques of EMG signals during isotonic and isometric contractions. Sensors. 2016;16(1304):1–28.


    Google Scholar
     

  • Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17(2):142–51.

    PubMed 
    Article 

    Google Scholar
     

  • Ortiz-Catalan M, Sander N, Kristoffersen MB, Håkansson B, Brånemark R. Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient. Front Neurosci. 2014;8(24):1–7.


    Google Scholar
     

  • Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16(6):541–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peeraer L, Aeyels B, Van der Perre G. Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J Biomed Eng. 1990;12(3):178–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pitkin MR. Lower limb prosthesis. In: Biomechanics of lower limb prosthetics, vol. xx. Berlin: Springer; 2010. p. 1–27.

    Chapter 

    Google Scholar
     

  • Popovic D, Tomovic R, Tepavac D, Schwirtlich L. Control aspects of active above-knee prosthesis. Int J Man Mach Stud. 1991;35(6):751–67.

    Article 

    Google Scholar
     

  • Radcliffe CW. Functional considerations in the fitting of above-knee prostheses. Artif Limbs. 1955;2(1):35–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Resnik L, Huang HH, Winslow A, Crouch DL, Zhang F, Wolk N. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. J Neuroeng Rehabil. 2018;15(1):1–13.

    Article 

    Google Scholar
     

  • Roche AD, Rehbaum H, Farina D, Aszmann OC. Prosthetic myoelectric control strategies: a clinical perspective. Curr Surg Rep. 2014;2(3):1–11.

    Article 

    Google Scholar
     

  • Roffman CE, Buchanan J, Allison GT. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. J Physiother. 2014;60(4):224–31.

    PubMed 
    Article 

    Google Scholar
     

  • Santosa F, Kroger K. Chapter 3: Trends in amputation. In: Vitin A, editor. Gangrene management—new advancements and current trends. Rijeka: IntechOpen; 2013. p. 27–36.


    Google Scholar
     

  • Sawake N, Gupta S, Ghatge A, Khatri A. EMG-based prosthetic leg for above-knee amputee. In: 2014 Texas instruments India educators’ conference (TIIEC), Los Alamitos, CA, US. IEEE; 2016. p. 69–72.

  • Scheme E, Englehart K. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabilit Res Dev. 2011;48(6):643.

    Article 

    Google Scholar
     

  • Schultz AE, Kuiken TA. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM&R. 2011;3(1):55–67.

    Article 

    Google Scholar
     

  • Scott RN, Parker PA. Myoelectric prostheses: state of the art. J Med Eng Technol. 1988;12(4):143–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • She Q, Luo Z, Meng M, Xu P. Multiple kernel learning SVM-based EMG pattern classification for lower limb control. In: 11th international conference on control, automation, robotics and vision, ICARCV 2010, (December). 2010. p. 2109–13.

  • Simon AM, Fey NP, Ingraham KA, Young AJ, Hargrove LJ. Powered prosthesis control during walking, sitting, standing, and non-weight bearing activities using neural and mechanical inputs. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER), San Diego, CA, USA. IEEE; 2013. p. 1174–7.

  • Smail LC, Neal C, Wilkins C, Packham TL. Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review. Disabil Rehabilit Assist Technol. 2021;16(8):821–30.

    Article 

    Google Scholar
     

  • Spanias JA, Perreault EJ, Hargrove LJ. Detection of and compensation for EMG disturbances for powered lower limb prosthesis control. IEEE Trans Neural Syst Rehabil Eng. 2016;24(2):226–34.

    PubMed 
    Article 

    Google Scholar
     

  • Spanias JA, Simon AM, Ingraham KA, Hargrove LJ. Effect of additional mechanical sensor data on an EMG-based pattern recognition system for a powered leg prosthesis. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), Montpellier, France. IEEE; 2015. p. 639–42.

  • Sup F, Bohara A, Goldfarb M. Design and control of a powered knee and ankle prosthesis. In: 2007 IEEE international conference on robotics and automation, Roma, Italy. IEEE; 2007. p. 4134–9.

  • Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Robot Res. 2008;27(2):263–73.

    Article 

    Google Scholar
     

  • Sup F, Varol HA, Goldfarb M. Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject. IEEE Trans Neural Syst Rehabil Eng. 2011;19(1):71–8.

    PubMed 
    Article 

    Google Scholar
     

  • Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M. Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE/ASME Trans Mechatron. 2009;14(6):667–76.

    Article 

    Google Scholar
     

  • Suzuki R, Sawada T, Kobayashi N, Hofer EP. Control method for powered ankle prosthesis via internal model control design. In: 2011 international conference on mechatronics and automation (ICMA), Beijing, China. IEEE; 2011. p. 237–42.

  • Tkach DC, Lipschutz RD, Finucane SB, Hargrove LJ. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. In: IEEE international conference on rehabilitation robotics, Seattle, WA, USA. IEEE; 2013. p. 1–4.

  • Torrealba RR, Fernández-López G, Grieco JC. Towards the development of knee prostheses: review of current researches. Kybernetes. 2008;37(9–10):1561–76.

    Article 

    Google Scholar
     

  • Torricelli D, Mizanoor RS, Gonzalez J, Lippi V, Hettich G, Asslaender L, Weckx M, Vanderborght B, Dosen S, Sartori M, Zhao J, Schütz S, Liu Q, Mergner T, Lefeber D, Farina D, Berns K, Pons JL. Benchmarking human-like posture and locomotion of humanoid robots: a preliminary scheme. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). New York: Springer; 2014. p. 8608.


    Google Scholar
     

  • TroyBlackburn J, Bell DR, Norcross MF, Hudson JD, Engstrom LA. Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J Electromyogr Kinesiol. 2009;19(5):e362–9.

    Article 

    Google Scholar
     

  • Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, Del Millán JR, Riener R, Vallery H, Gassert R. Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil. 2015;12(1):1–29.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • ur Rehman MZ, Waris A, Gilani SO, Jochumsen M, Niazi IK, Jamil M, Farina D, Kamavuako EN. Multiday EMG-based classification of hand motions with deep learning techniques. Sensors. 2018;18(8):1–16.

    Article 

    Google Scholar
     

  • Valgeirsdóttir VV, Sigurðardóttir JS, Lechler K, Tronicke L, Jóhannesson ÓI, Alexandersson Á, Kristjánsson Á. How do we measure success? A review of performance evaluations for lower-limb neuroprosthetics. JPO. 2022;34(1):e20–36.


    Google Scholar
     

  • Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M. Complementary limb motion estimation for the control of active knee prostheses. Biomed Tech. 2011;56(1):45–51.

    Article 

    Google Scholar
     

  • Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng. 2010;57(3):542–51.

    PubMed 
    Article 

    Google Scholar
     

  • Vos EJ, Harlaar J, Schenau GJVI. Electromechanical delay during knee extensor contractions. Med Sci Sport Exerc. 1991;23(10):1187–93.

    CAS 
    Article 

    Google Scholar
     

  • Wang J, Kannape OA, Herr HM. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. In: IEEE international conference on rehabilitation robotics. 2013.

  • Windrich M, Grimmer M, Christ O, Rinderknecht S, Beckerle P. Active lower limb prosthetics: a systematic review of design issues and solutions. Biomed Eng Online. 2016;15(S3):5–19.

    Article 

    Google Scholar
     

  • Winter D, Yack H. EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol. 1987;67(5):402–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Winter DA. Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum Mov Sci. 1984;3(1–2):51–76.

    Article 

    Google Scholar
     

  • Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki JM, Gambel JM. Assessment of transfemoral amputees using C-leg and power knee for ascending and descending inclines and steps. J Rehabilit Res Dev. 2012;49(6):831–42.

    Article 

    Google Scholar
     

  • Wu SK, Waycaster G, Shen X. Active knee prosthesis control with electromyography. In: ASME 2010 dynamic systems and control conference, DSCC2010, vol. 1, Cambridge, Massachusetts, USA. ASME; 2010. p. 785–91.

  • Wu SK, Waycaster G, Shen X. Electromyography-based control of active above-knee prostheses. Control Eng Pract. 2011;19(8):875–82.

    Article 

    Google Scholar
     

  • Xiao W, Huang H, Sun Y, Yang Q. Promise of embedded system with GPU in artificial leg control: enabling time-frequency feature extraction from electromyography. In: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society: engineering the future of biomedicine, EMBC 2009. 2009. p. 6926–9.

  • Yakovenko S, Gritsenko V, Prochazka A. Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern. 2004;90(2):146–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Young AJ, Kuiken TA, Hargrove LJ. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng. 2014;11(5): 056021.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Young AJ, Simon AM, Fey NP, Hargrove LJ. Classifying the intent of novel users during human locomotion using powered lower limb prostheses. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER), San Diego, CA, USA. IEEE; 2013. p. 311–4.

  • Zhang F, Dou Z, Nunnery M, Huang H. Real-time implementation of an intent recognition system for artificial legs. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. 2011. p. 2997–3000.

  • Zhang F, Fang Z, Liu M, Huang H. Preliminary design of a terrain recognition system. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, Boston, MA, USA. IEEE; 2011. p. 5452–5.

  • Zhang F, Huang H. Source selection for real-time user intent recognition toward volitional control of artificial legs. IEEE J Biomed Health Inform. 2013;17(5):907–14.

    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang F, Huang HH. Real-time recognition of user intent for neural control of artificial legs. In: Proceedings of the 2011 MyoElectric controls/powered prosthetics symposium fredericton, New Brunswick, Canada. 2011. p. 1–4.

  • Zhang F, Liu M, Huang H. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. In: 2012 annual international conference of the IEEE engineering in medicine and biology society (EMBC), San Diego, California, USA. IEEE; 2012. p. 2768–71.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)