• DeStrooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    CAS 
    Article 

    Google Scholar
     

  • Arends YM, Duyckaerts C, Rozemuller JM, Eikelenboom P, Hauw JJ (2000) Microglia, amyloid and dementia is Alzheimer disease: a correlative study. Neurobiol Aging 21:39–47

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Friedberg JS, Aytan N, Cherry JD, Xia W, Standring OJ, Alvarez VE, Nicks R, Svirsky S, Meng G, Jun G, Ryu H, Au R, Stein TD (2020) Associations between brain inflammatory profiles and human neuropathology are altered base on apolipoprotein E e4 genotype. Sci Rep 10:2924. https://doi.org/10.1038/s41598-020-59869-5

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker DG, Tang TM, Lue LF (2018) Increased expression of toll-like receptor 3, an antiviral signaling molecule, and related genes in Alzheimer’s disease brains. Exp Neurol 309:91–106

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M, Brayne C, Ince PG, Nicoll JAR, Boche D, MRC CFAS (2016) Microglial immunophenotype in dementia with Alzheimer’s pathology. J Neuroinflamm 13:135. https://doi.org/10.1186/s12974-016-0601-z

  • Hopperton KE, Mohammad D, Trepanier MO, Giuliano V, Bazinet RP (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23:177–198

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell 169:1276–1290

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT (2019) The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol 29:726–740

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • ui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A, (2020) Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer’s disease brains. Brain Pathol 30:151–164

    Article 
    CAS 

    Google Scholar
     

  • Tournier BB, Tsartsalis S, Ceyzeriat K, Garibotto V, Millet P (2020) In vivo TSPO signal and neuroinflammation in Alzheimer’s disease. Cells 9:19. https://doi.org/10.3390/cells9091941

    CAS 
    Article 

    Google Scholar
     

  • Streit WJ, Braak H, delTredici K, Leyh J, Lier J, Khoshbouei H et al (2018) Microglial activation occurs late during preclinical Alzheimer’s disease. Glia 66:2550–2562

    PubMed 
    Article 

    Google Scholar
     

  • Boyle PA, Yu L, Wilson RS, Leurgans SE, Schneider JA, Bennett DA (2018) Person-specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol 83:74–83

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Serrano-Pozo A, Qian J, Monsell SE, Frosch MP, Betensky RA, Hyman BT (2013) Examination of the clinicopathologic continuum of Alzheimer disease in the autopsy cohort of the national Alzheimer coordinating center. J Neuropathol Exp Neurol 72:1182–1192

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA (2018) Religious orders study and Rush memory and aging project. J Alzheimers Dis 64:S161–S189

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sood A, Raji MA (2021) Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs. Clin Rheumatol 40:1221–1231

    PubMed 
    Article 

    Google Scholar
     

  • Rakic S, Hung YMA, Smith M, So D, Tayler HM, Varney W et al (2018) Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s disease. Acta Neuropathol Commun 6:88. https://doi.org/10.1186/s40478-018-0592-3

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roberts ES, Masliah E, Fox HS (2004) CD163 identified a unique population of ramified microglia in HIV encephalitis (HIVE). J Neuropathol Exp Neurol 63(12):1255–1264

    PubMed 
    Article 

    Google Scholar
     

  • Levine AJ, Soontornniyomkij V, Achim CL, Masliah E, Gelman BB, Sinsheimer JS et al (2016) Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J Neurovirol 22:431–441

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gongvatana A, Harezlak J, Buchthal S, Daar E, Schifitto G, Campbell T et al (2013) Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neurovirol 19:209–218

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morgello S, Cortes EP, Gensler G, Meloni G, Jacobs MM, Murray J et al (2021) HIV disease duration, but not active brain infection, predicts cortical amyloid beta deposition. AIDS 35:1403–1412

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Woods SP, Rippeth JD, Frol AB, Levy JK, Ryan E, Soukup VM et al (2004) Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol 26:759–778

    PubMed 
    Article 

    Google Scholar
     

  • Morgello S, Gelman BB, Kozlowski PB, Vinters HV, Masliah E, Cornford M et al (2001) The National NeuroAIDS Tissue Consortium: a new paradigm in brain banking with an emphasis on infectious disease. Neuropathol Appl Neurobiol 27:326–335

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akiyama H, Mori H, Saido T, Kondo H, Ikeda K, McGeer PL (1999) Occurrence of the diffuse amyloid b-protein (Ab) deposits with numerous Ab-containing glial cells in the cerebral cortex of patients with Alzheimer’s disease. Glia 25:324–331

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thal DR, Rub U, Schultz C, Sassin I, Ghebremedhin E, delTredici K, Braak E, Braak H (2000) Sequence of Ab-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59(8):733–748

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD et al (2017) QuPath: Open source software for digital pathology image analysis. Sci Reports 7:16878


    Google Scholar
     

  • Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer Disease. Acta Neuropathol 118:5–36

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jankovska N, Olejar T, Matej R (2021) Extracellular amyloid deposits in Alzheimer’s and Creutzfledt-Jakob Disease: Similar behavior of different proteins? Int J Mol Sci 22:7

    CAS 
    Article 

    Google Scholar
     

  • Norden DM, Godbout JP (2013) Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39:19–34

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Overmyer M, Helisalmi S, Soininen H, Laakso M, Riekkinen P, Alafuzoff I (1999) Reactive microglia in aging and dementia: an immunohistochemical study of postmortem human brain tissue. Acta Neuropathol 97:383–392

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Egensperger R, Kosel S, vonEitzen U, Gaeber MB (1998) Microglial activation in Alzheimer disease: association with APOE genotype. Brain Pathol 8:439–447

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein-Cline M, Kanabar P, Collins N, Ben-Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, vanEldik LJ, LaDu MJ (2015) APOE-modulated AB-induced neuroinflammation in Alzheimer’s disease: current landscape, novel data, and future perspective. J Neurochem 133:465–498

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pletnikova O, Rudow GL, Hyde TM, Kleinman JE, Ali SZ, Bharadwaj R, Gangadeen S, Crain BJ, Fowler DR, Rubio AI, Troncoso JC (2015) Alzheimer lesions in the autopsied brains of people 30 to 50 years of age. Cogn Behav Neurol 28:144–152

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Braak H, Thal DR, Ghebremedhin E, DelTredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jack CR Jr, Wiste HJ, Weigand SD, Rocco WA, Knopman DS, Mielke MM et al (2014) Age-specific population frequencies of cerebral b-amyloidosis and neurodegeneration among people with normal cognitive function aged 50–89 years: a cross-sectional study. Lancet Neurol 13:997–1005

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, Miller EN (1999) Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53:782–789

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eholie SP, Badje A, Kouame GM, N’takpe JB, Moh R, Danel C, Anglaret X (2016) Antiretroviral treatment regardless of CD4 count: the universal answer to a contextual question. AIDS Res Ther. https://doi.org/10.1186/s12981-016-0111-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, Cavrois M, Huang Y, Mahley RW, Dolan MJ, McCune JM, Ahuja SK (2008) Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE e4/e4 genotype accelerates HIV disease progression. Proc Natl Acad Sci 105:8718–8723

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valcour V, Shiramizu B, Shikuma C (2008) Frequency of apolipoprotein E4 among older compared with younger HIV patients: support for detrimental effect of E4 on survival. Proc Natl Acad Sci 105:E66

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Becker JT, Martinson JJ, Penugonda S, Kingsley L, Molsberry S, Reynolds S, Aronow A, Goodkin K, Levine A, Martin E, Miller EN, Munro CA, Ragin A, Sacktor N (2015) No association between Apoe4 alleles, HIV infection, age, neuropsychological outcome, or death. J Neurovirol 21:24–31

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ipser JC, Vera JH (2021) Does duration of HIV infection substitute for age as a risk factor for amyloid deposition? AIDS 35:1501–1502

    PubMed 
    Article 

    Google Scholar
     

  • Soontornniyomkij V, Umlauf A, Soontornniyomkij B, Gouaux B, Ellis RJ, Levine AJ, Moore DJ, Letendre SL (2018) Association of antiretroviral therapy with brain aging changes among HIV-infected adults. AIDS 32:2005–2015

    PubMed 
    Article 

    Google Scholar
     

  • Fields JA, Swinton MK, Soontornniyomkij B, Carson A, Achim CL (2020) Beta amyloid levels in cerebrospinal fluid of HIV-infected people vary by exposure to antiretroviral therapy. AIDS 34:1001–1007

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Trunfio M, Atzori C, Pasquero M, DiStefano A, Vai D, Nigra M, Imperiale D, Bonora S, DiPerri G, Calcagno A (2022) Patterns of cerebrospinal fluid Alzheimer’s dementia biomarkers in people living with HIV: cross-sectional study on associated factors according to viral control, neurological confounders and neurocognition. Viruses 14:753. https://doi.org/10.3390/v14040753

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George JW, Mattingly JE, Roland NJ, Small CM, Lamberty BG, Fox HS, Stauch KL (2021) Physiologically relevant concentrations of dolutegravir, emtricitabine, and efavirenz induce distinct metabolic alterations in HeLa epitherlial and BV2 microglial cells. Front Immunol 12:639378. https://doi.org/10.3389/fimmu.2021.639378

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zulu SS, Abboussi O, Simola N, Mabandla MV, Daniels WMU (2020) Anti-HIV drugs promote b-amyloid deposition and impair learning and memory in BALB/c mice. Acta Neuropsychiatrica 32:257–264

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fields JA, Swinton MK, Carson A, Soontornniyomkij B, Lindsay C, Han MM et al (2019) Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice. Sci Rep 9:17168. https://doi.org/10.1038/s41598-019-53466-x

    CAS 
    Article 

    Google Scholar
     

  • Giunta B, Ehrhart J, Obregon DF, Lam L, Le L, Jin J et al (2011) Antiretroviral medications disrupt microglial phagocytosis of b-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain 4:23

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    PubMed 
    Article 

    Google Scholar
     

  • Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW (2014) Human APOE4 increases microglia reactivity at Ab plaques in a mouse model of Ab deposition. J Neuroinflamm 11:111

    Article 

    Google Scholar
     

  • Nguyen AT, Wang K, Hu G, Wang X, Miao Z, Azevedo JA et al (2020) APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta Neuropathol 140:477–493

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hashemiaghdam A, Mroczek M (2020) Microglia heterogeneity and neurodegeneration: the emerging paradigm of the role of immunity in Alzheimer’s disease. J Neuroimmunol 341:577185. https://doi.org/10.1016/j.neuroim.2020.577185

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yin Z, Raj D, Saiepour N, VanDam D, Brouwer N, Holtman IR et al (2017) Immune hyperreactivity of Ab plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging 55:115–122

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yanguas-Casas N (2020) Physiological sex differences in microglia and their relevance in neurologic disorders. Neuroimmunol Neuroinflammation 7:13–22

    CAS 

    Google Scholar
     

  • Gisslen M, Heslegrave A, Veleva E, Yilmaz A, Andersson LM, Hagberg L et al (2019) CSF concentrations of soluble TREM2 as a marker of microglial activation in HIV-1 infection. Neurol Neuroimmunol Neuroinflamm 6:e512. https://doi.org/10.1212/NXI.0000000000000512

    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)