• Cramer P. Organization and regulation of gene transcription. Nature. 2019;573(7772):45–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loppin B, Berger F. Histone variants: the nexus of developmental decisions and epigenetic memory. Annu Rev Genet. 2020;54:121–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Talbert PB, Henikoff S. Histone variants at a glance. J Cell Sci. 2021;134(6):jcs244749.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hirosawa M, Hayakawa K, Shiota K, Tanaka S. Histone O-GlcNAcylation and potential biological functions. OBM Genet. 2018;2(3):1.

    Article 

    Google Scholar
     

  • Gowans GJ, Bridgers JB, Zhang J, Dronamraju R, Burnetti A, King DA, et al. Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Mol Cell. 2019;76(6):909-21.e3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49(4):e324.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ho JWK, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, et al. Comparative analysis of metazoan chromatin organization. Nature. 2014;512(7515):449–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Levine MT, McCoy C, Vermaak D, Lee YCG, Hiatt MA, Matsen FA, et al. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family. PLoS Genet. 2012;8(6): e1002729.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vermaak D, Malik H. Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet. 2009;43:467–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eissenberg JC, Elgin SCR. HP1a: a structural chromosomal protein regulating transcription. Trends Genet. 2014;30(3):103–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature. 2002;416(6876):103–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smothers JF, Henikoff S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol. 2000;10(1):27–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meehan RR. HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J. 2003;22(12):3164–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Helleu Q, Levine MT. Recurrent amplification of the heterochromatin protein 1 (HP1) gene family across Diptera. Mol Biol Evol. 2018;35(10):2375–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oh J, Yeom S, Park J, Lee JS. The regional sequestration of heterochromatin structural proteins is critical to form and maintain silent chromatin. Epigenet Chromatin. 2022;15(1):5.

    CAS 
    Article 

    Google Scholar
     

  • Zofall M, Grewal SI. RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb Symp Quant Biol. 2006;71:487–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bondarenko VA, Steele LM, Újvári A, Gaykalova DA, Kulaeva OI, Polikanov YS, et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol Cell. 2006;24(3):469–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fei J, Ishii H, Hoeksema MA, Meitinger F, Kassavetis GA, Glass CK, et al. NDF, a nucleosome-destabilizing factor that facilitates transcription through nucleosomes. Genes Dev. 2018;32(9–10):682–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Orphanides G, Leroy G, Chang C-H, Luse DS, Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell. 1998;92(1):105–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Egel R, Beach DH, Klar AJ. Genes required for initiation and resolution steps of mating-type switching in fission yeast. Proc Natl Acad Sci. 1984;81(11):3481–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gutz H, Schmidt H. Switching genes in Schizosaccharomyces pombe. Curr Genet. 1985;9(5):325–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klar AJ, Bonaduce MJ. swi6, a gene required for mating-type switching, prohibits meiotic recombination in the mat2-mat3 “cold spot” of fission yeast. Genetics. 1991;129(4):1033–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lorentz A, Heim L, Schmidt H. The switching gene swi6 affects recombination and gene expression in the mating-type region of Schizosaccharomyces pombe. Mol Gen Genet. 1992;233(3):436–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lorentz A, Ostermann K, Fleck O, Schmidt H. Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene. 1994;143(1):139–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thon G, Verhein-Hansen J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics. 2000;155(2):551–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Isaac RS, Sanulli S, Tibble R, Hornsby M, Ravalin M, Craik CS, et al. Biochemical basis for distinct roles of the heterochromatin proteins Swi6 and Chp2. J Mol Biol. 2017;429(23):3666–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Motamedi MR, Hong EJ, Li X, Gerber S, Denison C, Gygi S, et al. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell. 2008;32(6):778–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • James TC, Elgin SC. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986;6(11):3862–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smothers JF, Henikoff S. The Hinge and Chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol. 2001;21(7):2555–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Volpe AM, Horowitz H, Grafer CM, Jackson SM, Berg CA. Drosophila rhino encodes a female-specific chromo-domain protein that affects chromosome structure and egg polarity. Genetics. 2001;159(3):1117–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vermaak D, Henikoff S, Malik HS. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet. 2005;1(1): e9.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fang C, Schmitz L, Ferree PM. An unusually simple HP1 gene set in Hymenopteran insects. Biochem Cell Biol. 2015;93(6):596–603.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X-Y, Zhang X-B, Li M-H, Zheng S-Q, Liu Z-L, Cheng Y-Y, et al. Genome-wide identification, evolution of chromobox family genes and their expression in Nile tilapia. Comp Biochem Physiol B: Biochem Mol Biol. 2017;203:25–34.

    CAS 
    Article 

    Google Scholar
     

  • Minc E, Allory Y, Worman HJ, Courvalin J-C, Buendia B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma. 1999;108(4):220–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grunstein M, Gasser SM. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol. 2013;5(7):a017491.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Huang H, Wiley EA, Lending CR, Allis CD. An HP1-like protein is missing from transcriptionally silent micronuclei of Tetrahymena. Proc Natl Acad Sci USA. 1998;95(23):13624–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yale K, Tackett AJ, Neuman M, Bulley E, Chait BT, Wiley E. Phosphorylation-dependent targeting of tetrahymena HP1 to condensed chromatin. mSphere. 2016;1(4):e00142.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guan H, Zheng Z, Grey PH, Li Y, Oppenheimer DG. Conservation and divergence of plant LHP1 protein sequences and expression patterns in angiosperms and gymnosperms. Mol Genet Genomics. 2011;285(5):357–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen D-H, Huang Y, Ruan Y, Shen W-H. The evolutionary landscape of PRC1 core components in green lineage. Planta. 2016;243(4):825–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elgin SCR, Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Har Perspect Biol. 2013;5(8):a017780.


    Google Scholar
     

  • Cryderman DE, Cuaycong MH, Elgin SC, Wallrath LL. Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma. 1998;107(5):277–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA. 1990;87(24):9923–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eissenberg JC, Morris GD, Reuter G, Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992;131(2):345–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reuter G, Dorn R, Wustmann G, Friede B, Rauh G. Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster. Mol Gen Genet MGG. 1986;202(3):481–7.

    CAS 
    Article 

    Google Scholar
     

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410(6824):116–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292(5514):110–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Canzio D, Chang EY, Shankar S, Kuchenbecker KM, Simon MD, Madhani HD, et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell. 2011;41(1):67–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, et al. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature. 2013;496(7445):377–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. Phase separation drives heterochromatin domain formation. Nature. 2017;547(7662):241–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature. 2017;547(7662):236–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 2019;575(7782):390–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature. 2019;570(7761):395–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seum C, Spierer A, Delattre M, Pauli D, Spierer P. A GAL4-HP1 fusion protein targeted near heterochromatin promotes gene silencing. Chromosoma. 2000;109(7):453–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development. 2003;130(9):1817–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee DH, Ryu HW, Kim GW, Kwon SH. Comparison of three heterochromatin protein 1 homologs in Drosophila. J Cell Sci. 2019;132(3):jcs222729.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun. 2017;8(1):560.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gessaman JD, Selker EU. Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa. Proc Natl Acad Sci USA. 2017;114(45):E9598–607.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR. Dynamics and memory of heterochromatin in living cells. Cell. 2012;149(7):1447–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, et al. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol Cell Biol. 2005;25(11):4552–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cryderman DE, Grade SK, Li Y, Fanti L, Pimpinelli S, Wallrath LL. Role of DrosophilaHP1 in euchromatic gene expression. Dev Dyn. 2005;232(3):767–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Lucia F, Ni JQ, Vaillant C, Sun FL. HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res. 2005;33(9):2852–8.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee DH, Li Y, Shin DH, Yi SA, Bang SY, Park EK, et al. DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila. Biochem Biophys Res Commun. 2013;434(4):820–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Riddle NC, Jung YL, Gu T, Alekseyenko AA, Asker D, Gui H, et al. Enrichment of HP1a on drosophila chromosome 4 genes creates an alternate chromatin structure critical for regulation in this heterochromatic domain. PLoS Genet. 2012;8(9): e1002954.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park AR, Liu N, Neuenkirchen N, Guo Q, Lin H. The role of maternal HP1a in early drosophila embryogenesis via regulation of maternal transcript production. Genetics. 2019;211(1):201–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Piacentini L, Sergio P. Positive regulation of euchromatic gene expression by HP1a. Fly. 2010;4(4):299–301.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Piacentini L, Fanti L, Berloco M, Perrini B, Pimpinelli S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol. 2003;161(4):707–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, et al. Heterochromatin Protein 1 (HP1a) positively regulates euchromatic gene expression through rna transcript association and interaction with hnRNPs in Drosophila. PLoS Genet. 2009;5(10): e1000670.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lu BY, Emtage PCR, Duyf BJ, Hilliker AJ, Eissenberg JC. Heterochromatin Protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics. 2000;155(2):699–708.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schulze SR, Sinclair DA, Fitzpatrick KA, Honda BM. A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics. 2005;169(4):2165–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wakimoto BT, Hearn MG. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics. 1990;125(1):141–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schultz J. Variegation in Drosophila and the inert chromosome regions. Proc Natl Acad Sci USA. 1936;22(1):27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cryderman DE, Vitalini MW, Wallrath LL. Heterochromatin protein 1a is required for an open chromatin structure. Transcription. 2011;2(2):95–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Greil F. Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 2003;17(22):2825–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smallwood A, Hon GC, Jin F, Henry RE, Espinosa JM, Ren B. CBX3 regulates efficient RNA processing genome-wide. Genome Res. 2012;22(8):1426–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li H, Rodriguez J, Yoo Y, Shareef MM, Badugu R, Horabin JI, et al. Cooperative and antagonistic contributions of two heterochromatin proteins to transcriptional regulation of the Drosophila sex determination decision. PLoS Genet. 2011;7(6): e1002122.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Figueiredo MLA, Philip P, Stenberg P, Larsson J. HP1a recruitment to promoters is independent of H3K9 methylation in Drosophila melanogaster. PLoS Genet. 2012;8(11): e1003061.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mills BB, Thomas AD, Riddle NC. HP1B is a euchromatic Drosophila HP1 homolog with links to metabolism. PLoS ONE. 2018;13(10): e0205867.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang D, Wang D, Sun F. Drosophila melanogaster heterochromatin protein HP1b plays important roles in transcriptional activation and development. Chromosoma. 2011;120(1):97–108.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Font-Burgada J, Rossell D, Auer H, Azorin F. Drosophila HP1c isoform interacts with the zinc-finger proteins WOC and Relative-of-WOC to regulate gene expression. Genes Dev. 2008;22(21):3007–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schoelz JM, Feng JX, Riddle NC. The Drosophila HP1 family is associated with active gene expression across chromatin contexts. Genetics. 2021;219(1): iyab108

    PubMed 
    Article 

    Google Scholar
     

  • Ryu H-W, Lee DH, Florens L, Swanson SK, Washburn MP, Kwon SH. Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. J Proteomics. 2014;102:137–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev. 2010;24(19):2133–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwon SH, Workman JL. The changing faces of HP1: from heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. BioEssays. 2011;33(4):280–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doheny JG, Mottus R, Grigliatti TA. Telomeric position effect—a third silencing mechanism in eukaryotes. PLoS ONE. 2008;3(12): e3864.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sun J, Wang X, Xu R-G, Mao D, Shen D, Xin W, et al. HP1c regulates development and gut homeostasis by suppressing Notch signaling through Su(H). EMBO Rep. 2021;22: e51298.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abel J, Eskeland R, Raffa GD, Kremmer E, Imhof A. Drosophila HP1c is regulated by an auto-regulatory feedback loop through its binding partner Woc. PLoS ONE. 2009;4(4): e5089.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dollinger R, Gilmour DS. Regulation of Promoter Proximal Pausing of RNA Polymerase II in Metazoans. J Mol Biol. 2021;433(14): 166897.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pinto D, Page V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet. 2021;67(5):695–705.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sansó M, Parua PK, Pinto D, Svensson JP, Pagé V, Bitton DA, et al. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Res. 2020;48(13):7154–68.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kessler R, Tisserand J, Font-Burgada J, Reina O, Coch L, Attolini CS-O, et al. dDsk2 regulates H2Bub1 and RNA polymerase II pausing at dHP1c complex target genes. Nat Commun. 2015;6(1):7049.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Di Mauro G, Carbonell A, Escudero-Ferruz P, Azorin F. The zinc-finger proteins WOC and ROW play distinct functions within the HP1c transcription complex. Biochim Biophys Acta Gene Regul Mech. 2020;1863(3): 194492.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Martin B, Chruscicki A, Howe L. Transcription promotes the interaction of the FAcilitates Chromatin Transactions (FACT) complex with nucleosomes in S. cerevisiae. Genetics. 2018;210(3):869–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, et al. FACT caught in the act of manipulating the nucleosome. Nature. 2020;577(7790):426–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA Polymerase II. Cell. 2006;125(4):703–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murawska M, Schauer T, Matsuda A, Wilson MD, Pysik T, Wojcik F, et al. The chaperone FACT and histone H2B ubiquitination maintain S. pombe genome architecture through genic and subtelomeric functions. Mol Cell. 2020;77(3):501–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Herman N, Kadener S, Shifman S. The chromatin factor ROW cooperates with BEAF-32 in regulating long-range inducible genes. bioRxiv. 2021:2021.03.08.434270.

  • Jiang N, Emberly E, Cuvier O, Hart CM. Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster Links BEAF to transcription. Mol Cell Biol. 2009;29(13):3556–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shrestha S, Oh D-H, McKowen JK, Dassanayake M, Hart CM. 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS ONE. 2018;13(9): e0203843.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dong Y, Avva SVSP, Maharjan M, Jacobi J, Hart CM. Promoter-proximal chromatin domain insulator protein BEAF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila. Genetics. 2020;215(1):89–101.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet. 2017;33(11):882–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128(6):1089–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yin H, Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature. 2007;450(7167):304–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kelleher ES. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics. 2016;203(4):1513–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, et al. The Drosophila HP1 homolog rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009;138(6):1137–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Z, Wang J, Schultz N, Zhang F, Swapnil P, Tu S, et al. The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 2014;157(6):1353–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rangan P, Malonne CD, Navarro C, Newbold SP, Sachidanandam R, et al. piRNA production requires heterochromatin formation in Drosophila. Curr Biolo. 2011;21(16):1373–9.

    CAS 
    Article 

    Google Scholar
     

  • Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and Maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151(5):964–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sienski G, Batki J, Senti K-A, Dönertas D, Tirian L, Meixner K, et al. Silencio/CG9754 connects the Piwi–piRNA complex to the cellular heterochromatin machinery. Genes Dev. 2015;29(21):2258–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pane A, Jiang P, Zhao DY, Singh M, Schüpbach T. The cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline. EMBO J. 2011;30(22):4601–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wehr K, Swan A, Schüpbach T. Deadlock, a novel protein of Drosophila, is required for germline maintenance, fusome morphogenesis and axial patterning in oogenesis and associates with centrosomes in the early embryo. Dev Biol. 2006;294(2):406–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mohn F, Sienski G, Handler D, Brennecke J. The Rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell. 2014;157(6):1364–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andersen PR, Tirian L, Vunjak M, Brennecke J. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 2017;549(7670):54–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buratowski S, Hahn S, Guarente L, Sharp PA. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell. 1989;56(4):549–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, et al. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev. 2007;21(18):2300–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang SH, Elgin SCR. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci. 2011;108(52):21164–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, et al. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science. 2015;350(6258):339–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun. 2018;9(1):1735.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Larkin A, Marygold SJ, Antonazzo G, Attrill H, Dos Santos G, Garapati PV, et al. FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res. 2021;49(D1):D899–907.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levine MT, Vander Wende HM, Malik HS. Mitotic fidelity requires transgenerational action of a testis-restricted HP1. Elife. 2015;4: e07378.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol Cell. 2005;19(3):381–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rachez C, Legendre R, Costallat M, Varet H, Yi J, Kornobis E, et al. HP1γ binding pre-mRNA intronic repeats modulates RNA splicing decisions. EMBO Rep. 2021;22(9):e52320.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saint-André V, Batsché E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol. 2011;18(3):337–44.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol. 2005;6(8):R67.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Piovesan A, Antonaros F, Vitale L, Strippoli P, Pelleri MC, Caracausi M. Human protein-coding genes and gene feature statistics in 2019. BMC Res Notes. 2019;12(1):315.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Loomis RJ, Naoe Y, Parker JB, Savic V, Bozovsky MR, Macfarlan T, et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol Cell. 2009;33(4):450–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alló M, Buggiano V, Fededa JP, Petrillo E, Schor I, De La Mata M, et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol. 2009;16(7):717–24.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007;21(10):1169–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fritsch L, Robin P, Mathieu JR, Souidi M, Hinaux H, Rougeulle C, et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol Cell. 2010;37(1):46–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)