• Snaidero N, Simons M. Myelination at a glance. J Cell Sci. 2014;127(Pt 14):2999–3004.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons. J Clin Invest. 2017;127(9):3271–80.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pohl HB, Porcheri C, Mueggler T, Bachmann LC, Martino G, Riethmacher D, Franklin RJ, Rudin M, Suter U. Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci. 2011;31(3):1069–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ghosh A, Manrique-Hoyos N, Voigt A, Schulz JB, Kreutzfeldt M, Merkler D, Simons M. Targeted ablation of oligodendrocytes triggers axonal damage. PLoS ONE. 2011;6(7): e22735.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oluich LJ, Stratton JA, Xing YL, Ng SW, Cate HS, Sah P, Windels F, Kilpatrick TJ, Merson TD. Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J Neurosci. 2012;32(24):8317–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci. 2015;8:35.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31.

    PubMed 
    Article 

    Google Scholar
     

  • Stys PK, Zamponi GW, van Minnen J, Geurts JJ. Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 2012;13(7):507–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019;26(1):27–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458–68.

    PubMed 
    Article 

    Google Scholar
     

  • Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, Hoffman B, Morgan BP. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol. 2001;50(5):646–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012;15(8):1074–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017;133(2):223–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev. 2004;17(1):174–207.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173–89.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Skundric DS. Experimental models of relapsing-remitting multiple sclerosis: current concepts and perspective. Curr Neurovasc Res. 2005;2(4):349–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sriram S, Steiner I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann Neurol. 2005;58(6):939–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zendedel A, Beyer C, Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci. 2013;51(2):567–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blakemore WF, Franklin RJ. Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol. 2008;318:193–212.

    CAS 
    PubMed 

    Google Scholar
     

  • Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O. Five decades of cuprizone, an updated model to replicate demyelinating diseases. Curr Neuropharmacol. 2019;17(2):129–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hooijmans CR, Hlavica M, Schuler FAF, Good N, Good A, Baumgartner L, Galeno G, Schneider MP, Jung T, de Vries R, et al. Remyelination promoting therapies in multiple sclerosis animal models: a systematic review and meta-analysis. Sci Rep. 2019;9(1):822.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Plemel JR, Liu WQ, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov. 2017;16(9):617–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nilsson G, Erdtman H, Lindstedt G, Kinell P. A new colour reaction on copper and certain carbonyl compounds. Acta Chem Scand. 1950;4:205–205.

    CAS 
    Article 

    Google Scholar
     

  • Carlton WW. Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci. 1967;6(1):11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carlton WW. Response of mice to the chelating agents sodium diethyldithiocarbamate, alpha-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharmacol. 1966;8(3):512–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Suzuki K. Giant hepatic mitochondria: production in mice fed with cuprizone. Science. 1969;163(3862):81–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kesterson JW, Carlton WW. Monoamine oxidase inhibition and the activity of other oxidative enzymes in the brains of mice fed cuprizone. Toxicol Appl Pharmacol. 1971;20(3):386–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Venturini G. Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem. 1973;21(5):1147–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Acs P, Selak MA, Komoly S, Kalman B. Distribution of oligodendrocyte loss and mitochondrial toxicity in the cuprizone-induced experimental demyelination model. J Neuroimmunol. 2013;262(1–2):128–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoppel CL, Tandler B. Biochemical effects of cuprizone on mouse liver and heart mitochondria. Biochem Pharmacol. 1973;22(18):2311–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carlton WW. Spongiform encephalopathy induced in rats and guinea pigs by cuprizone. Exp Mol Pathol. 1969;10(3):274–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silvestroff L, Bartucci S, Pasquini J, Franco P. Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp Neurol. 2012;235(1):357–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oakden W, Bock NA, Al-Ebraheem A, Farquharson MJ, Stanisz GJ. Early regional cuprizone-induced demyelination in a rat model revealed with MRI. NMR Biomed. 2017;30(9):e3743.

    Article 
    CAS 

    Google Scholar
     

  • Adamo AM, Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, Pasquini JM, Soto EF. Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol. 2006;198(2):519–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanno T, Sasaki S, Yamada N, Kawasako K, Tsuchitani M. Hexachlorophene and cuprizone induce the spongy change of the developing rat brain by different mechanisms: the role of 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNPase). J Vet Med Sci. 2012;74(7):837–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buyukmihci N, Goehring-Harmon F, Marsh RF. Retinal degeneration during clinical scrapie encephalopathy in hamsters. J Comp Neurol. 1982;205(2):153–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kimberlin RH, Collis SC, Walker CA. Profiles of brain glycosidase activity in cuprizone-fed Syrian hamsters and in scrapie-affected mice, rats, Chinese hamsters and Syrian hamsters. J Comp Pathol. 1976;86(1):135–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Z, Chen JT, Johnson M, Gossman ZC, Hendrickson M, Sakaie K, Martinez-Rubio C, Gale JT, Trapp BD. Cuprizone does not induce CNS demyelination in nonhuman primates. Ann Clin Transl Neurol. 2015;2(2):208–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kondo A, Nakano T, Suzuki K. Blood-brain barrier permeability to horseradish peroxidase in twitcher and cuprizone-intoxicated mice. Brain Res. 1987;425(1):186–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bakker DA, Ludwin SK. Blood-brain barrier permeability during Cuprizone-induced demyelination. Implications for the pathogenesis of immune-mediated demyelinating diseases. J Neurol Sci. 1987;78(2):125–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sansom BF, Pattison IH, Jebbett JN. Permeability of blood vessels in mice affected with scrapie or fed with cuprizone. J Comp Pathol. 1973;83(4):461–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol. 1998;92(1–2):38–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Torkildsen O, Brunborg LA, Myhr KM, Bo L. The cuprizone model for demyelination. Acta Neurol Scand Suppl. 2008;188:72–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xing YL, Roth PT, Stratton JA, Chuang BH, Danne J, Ellis SL, Ng SW, Kilpatrick TJ, Merson TD. Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J Neurosci. 2014;34(42):14128–46.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Berghoff SA, Gerndt N, Winchenbach J, Stumpf SK, Hosang L, Odoardi F, Ruhwedel T, Bohler C, Barrette B, Stassart R, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8:14241.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 2001;11(1):107–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blakemore WF. Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J Neurol Sci. 1973;20(1):63–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ludwin SK. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest. 1978;39(6):597–612.

    CAS 
    PubMed 

    Google Scholar
     

  • Jurevics H, Largent C, Hostettler J, Sammond DW, Matsushima GK, Kleindienst A, Toews AD, Morell P. Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J Neurochem. 2002;82(1):126–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silvestroff L, Bartucci S, Soto E, Gallo V, Pasquini J, Franco P. Cuprizone-induced demyelination in CNP::GFP transgenic mice. J Comp Neurol. 2010;518(12):2261–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Norkute A, Hieble A, Braun A, Johann S, Clarner T, Baumgartner W, Beyer C, Kipp M. Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res. 2009;87(6):1343–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang HJ, Wang H, Zhang Y, Xiao L, Clough RW, Browning R, Li XM, Xu H. Region-specific susceptibilities to cuprizone-induced lesions in the mouse forebrain: Implications for the pathophysiology of schizophrenia. Brain Res. 2009;1270:121–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoffmann K, Lindner M, Groticke I, Stangel M, Loscher W. Epileptic seizures and hippocampal damage after cuprizone-induced demyelination in C57BL/6 mice. Exp Neurol. 2008;210(2):308–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, Trebst C, Stangel M. Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 2009;1283:127–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lindner M, Fokuhl J, Linsmeier F, Trebst C, Stangel M. Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett. 2009;453(2):120–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Plant SR, Arnett HA, Ting JP. Astroglial-derived lymphotoxin-alpha exacerbates inflammation and demyelination, but not remyelination. Glia. 2005;49(1):1–14.

    PubMed 
    Article 

    Google Scholar
     

  • Franco-Pons N, Torrente M, Colomina MT, Vilella E. Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett. 2007;169(3):205–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hibbits N, Pannu R, Wu TJ, Armstrong RC. Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination. ASN Neuro. 2009;1(3):e00013.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Blakemore WF. Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci. 1973;20(1):73–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ludwin SK. Chronic demyelination inhibits remyelination in the central nervous system. An analysis of contributing factors. Lab Invest. 1980;43(4):382–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Liebetanz D, Merkler D. Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol. 2006;202(1):217–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manrique-Hoyos N, Jurgens T, Gronborg M, Kreutzfeldt M, Schedensack M, Kuhlmann T, Schrick C, Bruck W, Urlaub H, Simons M, et al. Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann Neurol. 2012;71(2):227–44.

    PubMed 
    Article 

    Google Scholar
     

  • Morgan ML, Kaushik DK, Stys PK, Caprariello AV. Autofluorescence spectroscopy as a proxy for chronic white matter pathology. Mult Scler. 2021;27(7):1046–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain. 1999;122(Pt 12):2279–95.

    PubMed 
    Article 

    Google Scholar
     

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Metz I, Gavrilova RH, Weigand SD, Frischer JM, Popescu BF, Guo Y, Gloth M, Tobin WO, Zalewski NL, Lassmann H, et al. magnetic resonance imaging correlates of multiple sclerosis immunopathological patterns. Ann Neurol. 2021;90(3):440–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Metz I, Weigand SD, Popescu BF, Frischer JM, Parisi JE, Guo Y, Lassmann H, Bruck W, Lucchinetti CF. Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann Neurol. 2014;75(5):728–38.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torkildsen O, Brunborg LA, Milde AM, Mork SJ, Myhr KM, Bo L. A salmon based diet protects mice from behavioural changes in the cuprizone model for demyelination. Clin Nutr. 2009;28(1):83–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mahad D, Ziabreva I, Lassmann H, Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain. 2008;131(Pt 7):1722–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaddatz H, Joost S, Nedelcu J, Chrzanowski U, Schmitz C, Gingele S, Gudi V, Stangel M, Zhan J, Santrau E, et al. Cuprizone-induced demyelination triggers a CD8-pronounced T cell recruitment. Glia. 2021;69(4):925–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Veto S, Acs P, Bauer J, Lassmann H, Berente Z, Setalo G Jr, Borgulya G, Sumegi B, Komoly S, Gallyas F Jr, et al. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain. 2010;133(Pt 3):822–34.

    PubMed 
    Article 

    Google Scholar
     

  • Hochmeister S, Grundtner R, Bauer J, Engelhardt B, Lyck R, Gordon G, Korosec T, Kutzelnigg A, Berger JJ, Bradl M, et al. Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol. 2006;65(9):855–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov. 2019;18(12):905–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Milstein JL, Barbour CR, Jackson K, Kosa P, Bielekova B. Intrathecal, not systemic inflammation is correlated with multiple sclerosis severity, especially in progressive multiple sclerosis. Front Neurol. 2019;10:1232.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berghoff SA, Duking T, Spieth L, Winchenbach J, Stumpf SK, Gerndt N, Kusch K, Ruhwedel T, Mobius W, Saher G. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun. 2017;5(1):94.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shelestak J, Singhal N, Frankle L, Tomor R, Sternbach S, McDonough J, Freeman E, Clements R. Increased blood-brain barrier hyperpermeability coincides with mast cell activation early under cuprizone administration. PLoS ONE. 2020;15(6):e0234001.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705–12.

    PubMed 
    Article 

    Google Scholar
     

  • Calabrese M, Rinaldi F, Grossi P, Gallo P. Cortical pathology and cognitive impairment in multiple sclerosis. Expert Rev Neurother. 2011;11(3):425–32.

    PubMed 
    Article 

    Google Scholar
     

  • Kipp M, Clarner T, Dang J, Copray S, Beyer C. The cuprizone animal model: new insights into an old story. Acta Neuropathol. 2009;118(6):723–36.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Cai L, Fan K, Fan B, Li N, Gao W, Yang X, Ma J. The spatial and temporal characters of demyelination and remyelination in the cuprizone animal model. Anat Rec (Hoboken). 2019;302(11):2020–9.

    CAS 
    Article 

    Google Scholar
     

  • Geurts JJ, Barkhof F. Grey matter pathology in multiple sclerosis. Lancet Neurol. 2008;7(9):841–51.

    PubMed 
    Article 

    Google Scholar
     

  • Carassiti D, Altmann DR, Petrova N, Pakkenberg B, Scaravilli F, Schmierer K. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol Appl Neurobiol. 2018;44(4):377–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strijbis EMM, Kooi EJ, van der Valk P, Geurts JJG. Cortical remyelination is heterogeneous in multiple sclerosis. J Neuropathol Exp Neurol. 2017;76(5):390–401.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang A, Staugaitis SM, Dutta R, Batt CE, Easley KE, Chomyk AM, Yong VW, Fox RJ, Kidd GJ, Trapp BD. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol. 2012;72(6):918–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wergeland S, Torkildsen O, Myhr KM, Mork SJ, Bo L. The cuprizone model: regional heterogeneity of pathology. APMIS. 2012;120(8):648–57.

    PubMed 
    Article 

    Google Scholar
     

  • Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, Liew CJ, Sato S, Patronas N. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358(6):605–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tumer Z, Moller LB. Menkes disease. Eur J Hum Genet. 2010;18(5):511–8.

    PubMed 
    Article 

    Google Scholar
     

  • Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci. 2020;21(23):9259.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tezuka T, Tamura M, Kondo MA, Sakaue M, Okada K, Takemoto K, Fukunari A, Miwa K, Ohzeki H, Kano S, et al. Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol Dis. 2013;59:63–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zatta P, Raso M, Zambenedetti P, Wittkowski W, Messori L, Piccioli F, Mauri PL, Beltramini M. Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cell Mol Life Sci. 2005;62(13):1502–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Benetti F, Ventura M, Salmini B, Ceola S, Carbonera D, Mammi S, Zitolo A, D’Angelo P, Urso E, Maffia M, et al. Cuprizone neurotoxicity, copper deficiency and neurodegeneration. Neurotoxicology. 2010;31(5):509–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Messori L, Casini A, Gabbiani C, Sorace L, Muniz-Miranda M, Zatta P. Unravelling the chemical nature of copper cuprizone. Dalton Trans. 2007;21:2112–4.

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto N, Kuwata K. DFT studies on redox properties of copper-chelating cuprizone: Unusually high-valent copper(III) state. J Mol Struct (Thoechem). 2009;895(1):52–6.

    CAS 
    Article 

    Google Scholar
     

  • Kapeller-Adler R. Amine oxidases and methods for their study. Wiley-Interscience; 1970.

  • Lindstrom A, Pettersson G. The mechanism of inhibition of pig-plasma benzylamine oxidase by the copper-chelating reagent cuprizone. Eur J Biochem. 1974;48(1):229–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taraboletti A, Walker T, Avila R, Huang H, Caporoso J, Manandhar E, Leeper TC, Modarelli DA, Medicetty S, Shriver LP. Cuprizone intoxication induces cell intrinsic alterations in oligodendrocyte metabolism independent of copper chelation. Biochemistry. 2017;56(10):1518–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Teo W, Caprariello AV, Morgan ML, Luchicchi A, Schenk GJ, Joseph JT, et al. Nile Red fluorescence spectroscopy reports early physicochemical changes in myelin with high sensitivity. Proc Natl Acad Sci U S A. 2021;118(8):e2016897118. https://doi.org/10.1073/pnas.2016897118.

  • Caprariello AV, Rogers JA, Morgan ML, Hoghooghi V, Plemel JR, Koebel A, Tsutsui S, Dunn JF, Kotra LP, Ousman SS, et al. Biochemically altered myelin triggers autoimmune demyelination. Proc Natl Acad Sci U S A. 2018;115(21):5528–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M. Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci. 2012;48(1):66–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoel I, Stys PK, David S. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J Neurosci. 2020;40(48):9327–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raine CS. Morphology of Myelin and Myelination. In: Myelin. edn. Edited by Morell P. Boston: Springer US; 1984: p. 1–50.

  • McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem. 2008;107(1):1–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheepsunthorn P, Palmer C, Connor JR. Cellular distribution of ferritin subunits in postnatal rat brain. J Comp Neurol. 1998;400(1):73–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996;17(2):83–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thorburne SK, Juurlink BH. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem. 1996;67(3):1014–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev. 2014;47:485–505.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci. 2014;8:73.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Acs P, Komoly S. Selective ultrastructural vulnerability in the cuprizone-induced experimental demyelination. Ideggyogy Sz. 2012;65(7–8):266–70.

    PubMed 

    Google Scholar
     

  • Benardais K, Kotsiari A, Skuljec J, Koutsoudaki PN, Gudi V, Singh V, Vulinovic F, Skripuletz T, Stangel M. Cuprizone [bis(cyclohexylidenehydrazide)] is selectively toxic for mature oligodendrocytes. Neurotox Res. 2013;24(2):244–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pasquini LA, Calatayud CA, Bertone Una AL, Millet V, Pasquini JM, Soto EF. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res. 2007;32(2):279–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karbowski M, Kurono C, Nishizawa Y, Horie Y, Soji T, Wakabayashi T. Induction of megamitochondria by some chemicals inducing oxidative stress in primary cultured rat hepatocytes. Biochim Biophys Acta. 1997;1349(3):242–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wakabayashi T, Adachi K, Matsuhashi T, Wozniak M, Antosiewicz J, Karbowsky M. Suppression of the formation of megamitochondria by scavengers for free radicals. Mol Aspects Med. 1997;18(Suppl):S51-61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wakabayashi T. Megamitochondria formation – physiology and pathology. J Cell Mol Med. 2002;6(4):497–538.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wakabayashi T. Structural changes of mitochondria related to apoptosis: swelling and megamitochondria formation. Acta Biochim Pol. 1999;46(2):223–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002;128(4):1271–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999;144(2):281–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002;297(5579):259–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Faizi M, Salimi A, Seydi E, Naserzadeh P, Kouhnavard M, Rahimi A, Pourahmad J. Toxicity of cuprizone a Cu(2+) chelating agent on isolated mouse brain mitochondria: a justification for demyelination and subsequent behavioral dysfunction. Toxicol Mech Methods. 2016;26(4):276–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun. 1986;1(3):163–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo M, Deng M, Yu Z, Zhang Y, Xu S, Hu S, Xu H. Differential Susceptibility and Vulnerability of Brain Cells in C57BL/6 Mouse to Mitochondrial Dysfunction Induced by Short-Term Cuprizone Exposure. Front Neuroanat. 2020;14:30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Biemond P, Swaak AJ, van Eijk HG, Koster JF. Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic Biol Med. 1988;4(3):185–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Horn D, Barrientos A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life. 2008;60(7):421–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–21.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):443–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci. 2011;31(2):538–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121(8):799–817.

    CAS 
    Article 

    Google Scholar
     

  • McBain CJ, Mayer ML. N-methyl-D-aspartic acid receptor structure and function. Physiol Rev. 1994;74(3):723–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1041–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58(3):293–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23(9):1261–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Olney JW. Inciting excitotoxic cytocide among central neurons. Adv Exp Med Biol. 1986;203:631–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klauser AM, Wiebenga OT, Eijlers AJ, Schoonheim MM, Uitdehaag BM, Barkhof F, Pouwels PJ, Geurts JJ. Metabolites predict lesion formation and severity in relapsing-remitting multiple sclerosis. Mult Scler. 2018;24(4):491–500.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee DW, Kwon JI, Woo CW, Heo H, Kim KW, Woo DC, Kim JK, Lee DH. In vivo measurement of neurochemical abnormalities in the hippocampus in a rat model of cuprizone-induced demyelination. Diagnostics (Basel). 2020;11(1):45.

    Article 
    CAS 

    Google Scholar
     

  • Lee DW, Heo H, Woo CW, Woo DC, Kim JK, Kim KW, Lee DH. Temporal changes in in vivo glutamate signal during demyelination and remyelination in the corpus callosum: a glutamate-weighted chemical exchange saturation transfer imaging study. Int J Mol Sci. 2020;21(24):9468.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, Brose N, Rosenmund C. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc Natl Acad Sci U S A. 2004;101(18):7158–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takamori S, Rhee JS, Rosenmund C, Jahn R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature. 2000;407(6801):189–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science. 2000;289(5481):957–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoflich KM, Beyer C, Clarner T, Schmitz C, Nyamoya S, Kipp M, Hochstrasser T. Acute axonal damage in three different murine models of multiple sclerosis: a comparative approach. Brain Res. 2016;1650:125–33.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H, Murnick JG, Erickson JD, Liu G. Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J Neurosci. 2005;25(26):6221–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Azami Tameh A, Clarner T, Beyer C, Atlasi MA, Hassanzadeh G, Naderian H. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Ann Anat. 2013;195(5):415–23.

    PubMed 
    Article 

    Google Scholar
     

  • Matteucci A, Cammarota R, Paradisi S, Varano M, Balduzzi M, Leo L, Bellenchi GC, De Nuccio C, Carnovale-Scalzo G, Scorcia G, et al. Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest Ophthalmol Vis Sci. 2011;52(2):1070–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peterson AR, Binder DK. Astrocyte Glutamate Uptake and Signaling as Novel Targets for Antiepileptogenic Therapy. Front Neurol. 2020;11:1006.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vallejo-Illarramendi A, Domercq M, Perez-Cerda F, Ravid R, Matute C. Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis. 2006;21(1):154–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics. 2010;7(4):494–506.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307(5950):462–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peters S, Koh J, Choi DW. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science. 1987;236(4801):589–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marchetti C, Baranowska-Bosiacka I, Gavazzo P. Multiple effects of copper on NMDA receptor currents. Brain Res. 2014;1542:20–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Gen Physiol. 2008;131(6):i5.

    PubMed 
    Article 

    Google Scholar
     

  • You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, Engbers JD, Lipton SA, Stys PK, Zamponi GW. Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A. 2012;109(5):1737–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stys PK, You H, Zamponi GW. Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. J Physiol. 2012;590(6):1357–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol. 2008;181(3):551–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Radovanovic I, Braun N, Giger OT, Mertz K, Miele G, Prinz M, Navarro B, Aguzzi A. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J Neurosci. 2005;25(19):4879–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bribian A, Fontana X, Llorens F, Gavin R, Reina M, Garcia-Verdugo JM, Torres JM, de Castro F, del Rio JA. Role of the cellular prion protein in oligodendrocyte precursor cell proliferation and differentiation in the developing and adult mouse CNS. PLoS ONE. 2012;7(4):e33872.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morell P, Barrett CV, Mason JL, Toews AD, Hostettler JD, Knapp GW, Matsushima GK. Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci. 1998;12(4–5):220–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jurevics H, Hostettler J, Muse ED, Sammond DW, Matsushima GK, Toews AD, Morell P. Cerebroside synthesis as a measure of the rate of remyelination following cuprizone-induced demyelination in brain. J Neurochem. 2001;77(4):1067–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goldberg J, Daniel M, van Heuvel Y, Victor M, Beyer C, Clarner T, Kipp M. Short-term cuprizone feeding induces selective amino acid deprivation with concomitant activation of an integrated stress response in oligodendrocytes. Cell Mol Neurobiol. 2013;33(8):1087–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Podbielska M, Levery SB, Hogan EL. The structural and functional role of myelin fast-migrating cerebrosides: pathological importance in multiple sclerosis. Clin Lipidol. 2011;6(2):159–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saher G, Quintes S, Nave KA. Cholesterol: a novel regulatory role in myelin formation. Neuroscientist. 2011;17(1):79–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hemm RD, Carlton WW, Welser JR. Ultrastructural changes of cuprizone encephalopathy in mice. Toxicol Appl Pharmacol. 1971;18(4):869–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blakemore WF. The response of oligodendrocytes to chemical injury. Acta Neurol Scand Suppl. 1984;100:33–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res. 2016;1641(Pt A):139–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Falcao AM, van Bruggen D, Marques S, Meijer M, Jakel S, Agirre E, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med. 2018;24(12):1837–44. https://doi.org/10.1038/s41591-018-0236-y.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheld M, Fragoulis A, Nyamoya S, Zendedel A, Denecke B, Krauspe B, Teske N, Kipp M, Beyer C, Clarner T. mitochondrial impairment in oligodendroglial cells induces cytokine expression and signaling. J Mol Neurosci. 2019;67(2):265–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Skuljec J, Sun H, Pul R, Benardais K, Ragancokova D, Moharregh-Khiabani D, Kotsiari A, Trebst C, Stangel M. CCL5 induces a pro-inflammatory profile in microglia in vitro. Cell Immunol. 2011;270(2):164–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Holmberg KH, Patterson PH. Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res. 2006;1075(1):26–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R, West BL, Green KN. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation. 2015;12:139.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Laflamme N, Cisbani G, Prefontaine P, Srour Y, Bernier J, St-Pierre MK, Tremblay ME, Rivest S. mCSF-Induced microglial activation prevents myelin loss and promotes its repair in a mouse model of multiple sclerosis. Front Cell Neurosci. 2018;12:178.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Maiti AK, Sharba S, Navabi N, Forsman H, Fernandez HR, Linden SK. IL-4 Protects the mitochondria against tnfalpha and ifngamma induced insult during clearance of infection with citrobacter rodentium and escherichia coli. Sci Rep. 2015;5:15434.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang X, Tachibana S, Wang H, Hisada M, Williams GM, Gao B, Sun Z. Interleukin-6 is an important mediator for mitochondrial DNA repair after alcoholic liver injury in mice. Hepatology. 2010;52(6):2137–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schonrock LM, Gawlowski G, Bruck W. Interleukin-6 expression in human multiple sclerosis lesions. Neurosci Lett. 2000;294(1):45–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petkovic F, Campbell IL, Gonzalez B, Castellano B. Astrocyte-targeted production of interleukin-6 reduces astroglial and microglial activation in the cuprizone demyelination model: Implications for myelin clearance and oligodendrocyte maturation. Glia. 2016;64(12):2104–19.

    PubMed 
    Article 

    Google Scholar
     

  • Petkovic F, Campbell IL, Gonzalez B, Castellano B. Reduced cuprizone-induced cerebellar demyelination in mice with astrocyte-targeted production of IL-6 is associated with chronically activated, but less responsive microglia. J Neuroimmunol. 2017;310:97–102.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kesterson JW, Carlton WW. Histopathologic and enzyme histochemical observations of the cuprizone-induced brain edema. Exp Mol Pathol. 1971;15(1):82–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blakemore WF. Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol. 1972;1(4):413–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colombo E, Triolo D, Bassani C, Bedogni F, Di Dario M, Dina G, Fredrickx E, Fermo I, Martinelli V, Newcombe J, et al. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc Natl Acad Sci U S A. 2021;118(27):e2025804118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raasch J, Zeller N, van Loo G, Merkler D, Mildner A, Erny D, Knobeloch KP, Bethea JR, Waisman A, Knust M, et al. IkappaB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-kappaB in the central nervous system. Brain. 2011;134(Pt 4):1184–98.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang H, Sun SC. NF-kappaB in inflammation and renal diseases. Cell Biosci. 2015;5:63.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Madadi S, Pasbakhsh P, Tahmasebi F, Mortezaee K, Khanehzad M, Boroujeni FB, Noorzehi G, Kashani IR. Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metab Brain Dis. 2019;34(2):593–603.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, et al. CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci. 2004;24(39):8500–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgartner W, Stangel M. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain. 2013;136(Pt 1):147–67.

    PubMed 
    Article 

    Google Scholar
     

  • Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, et al. CXCL10 triggers early microglial activation in the cuprizone model. J Immunol. 2015;194(7):3400–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Selmaj K, Raine CS, Farooq M, Norton WT, Brosnan CF. Cytokine cytotoxicity against oligodendrocytes Apoptosis induced by lymphotoxin. J Immunol. 1991;147(5):1522–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133(2):177–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marzan DE, Brugger-Verdon V, West BL, Liddelow S, Samanta J, Salzer JL. Activated microglia drive demyelination via CSF1R signaling. Glia. 2021;69(6):1583–604.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Greter M, Lelios I, Croxford AL. Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation. Front Immunol. 2015;6:249.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. The cyclooxygenase-2 pathway via the PGE(2) EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination. J Neurochem. 2012;121(3):418–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Plemel JR, Manesh SB, Sparling JS, Tetzlaff W. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia. 2013;61(9):1471–87.

    PubMed 
    Article 

    Google Scholar
     

  • Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain. 2009;132(Pt 2):465–81.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kotter MR, Li WW, Zhao C, Franklin RJ. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 2006;26(1):328–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Plemel JR, Stratton JA, Michaels NJ, Rawji KS, Zhang E, Sinha S, Baaklini CS, Dong Y, Ho M, Thorburn K, et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv. 2020;6(3):eaay6324.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rawji KS, Young AMH, Ghosh T, Michaels NJ, Mirzaei R, Kappen J, Kolehmainen KL, Alaeiilkhchi N, Lozinski B, Mishra MK, et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathol. 2020;139(5):893–909.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S, Kipp M. Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. 2012;60(10):1468–80.

    PubMed 
    Article 

    Google Scholar
     

  • Shen K, Reichelt M, Kyauk RV, Ngu H, Shen YA, Foreman O, Modrusan Z, Friedman BA, Sheng M, Yuen TJ. Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep. 2021;34(10):108835.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lemke G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol. 2013;5(11):a009076.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, Yuede CM, Galimberti D, Olivecrona G, Klein RS, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129(3):429–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, Gilfillan S, Colonna M. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest. 2015;125(5):2161–70.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, Manis M, Ibrahim A, Deng L, Benitez BA, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140(4):513–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, Liu Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. 2017;37(6):2224–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, Wang J, Zhao L, Liang YX, Wu T, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci. 2018;21(4):530–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tahmasebi F, Pasbakhsh P, Barati S, Madadi S, Kashani IR. The effect of microglial ablation and mesenchymal stem cell transplantation on a cuprizone-induced demyelination model. J Cell Physiol. 2021;236(5):3552–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kishore U, Reid KB. Modular organization of proteins containing C1q-like globular domain. Immunopharmacology. 1999;42(1–3):15–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Briggs DT, Martin CB, Ingersoll SA, Barnum SR, Martin BK. Astrocyte-specific expression of a soluble form of the murine complement control protein Crry confers demyelination protection in the cuprizone model. Glia. 2007;55(14):1405–15.

    PubMed 
    Article 

    Google Scholar
     

  • Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP. Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci. 2003;23(30):9824–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bao L, Wang Y, Chang A, Minto AW, Zhou J, Kang H, Haas M, Quigg RJ. Unrestricted C3 activation occurs in Crry-deficient kidneys and rapidly leads to chronic renal failure. J Am Soc Nephrol. 2007;18(3):811–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ehrengruber MU, Geiser T, Deranleau DA. Activation of human neutrophils by C3a and C5A. Comparison of the effects on shape changes, chemotaxis, secretion, and respiratory burst. FEBS Lett. 1994;346(2–3):181–4.

    CAS 
    PubMed 

    Google Scholar
     

  • van Lookeren CM, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007;9(9):2095–102.

    Article 
    CAS 

    Google Scholar
     

  • Armstrong RC, Harvath L, Dubois-Dalcq ME. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res. 1990;27(3):400–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crehan H, Hardy J, Pocock J. Microglia, Alzheimer’s disease, and complement. Int J Alzheimers Dis. 2012;2012:983640.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crehan H, Hardy J, Pocock J. Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis. 2013;54:139–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nolte C, Moller T, Walter T, Kettenmann H. Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience. 1996;73(4):1091–107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ingersoll SA, Martin CB, Barnum SR, Martin BK. CNS-specific expression of C3a and C5a exacerbate demyelination severity in the cuprizone model. Mol Immunol. 2010;48(1–3):219–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Harlow DE, Given KS, Owens GP, Macklin WB, Bennett JL. Variable sensitivity to complement-dependent cytotoxicity in murine models of neuromyelitis optica. J Neuroinflammation. 2016;13(1):301.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Scolding NJ, Morgan BP, Campbell AK, Compston DA. Complement mediated serum cytotoxicity against oligodendrocytes: a comparison with other cells of the oligodendrocyte-type 2 astrocyte lineage. J Neurol Sci. 1990;97(2–3):155–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tradtrantip L, Yao X, Su T, Smith AJ, Verkman AS. Bystander mechanism for complement-initiated early oligodendrocyte injury in neuromyelitis optica. Acta Neuropathol. 2017;134(1):35–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vandendriessche S, Cambier S, Proost P, Marques PE. Complement receptors and their role in leukocyte recruitment and phagocytosis. Front Cell Dev Biol. 2021;9:624025.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McMahon EJ, Cook DN, Suzuki K, Matsushima GK. Absence of macrophage-inflammatory protein-1alpha delays central nervous system demyelination in the presence of an intact blood-brain barrier. J Immunol. 2001;167(5):2964–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4(11):1116–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cammer W. Apoptosis of oligodendrocytes in secondary cultures from neonatal rat brains. Neurosci Lett. 2002;327(2):123–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jurewicz A, Matysiak M, Tybor K, Selmaj K. TNF-induced death of adult human oligodendrocytes is mediated by c-jun NH2-terminal kinase-3. Brain. 2003;126(Pt 6):1358–70.

    PubMed 
    Article 

    Google Scholar
     

  • Janssens K, Maheshwari A, Van den Haute C, Baekelandt V, Stinissen P, Hendriks JJ, Slaets H, Hellings N. Oncostatin M protects against demyelination by inducing a protective microglial phenotype. Glia. 2015;63(10):1729–37.

    PubMed 
    Article 

    Google Scholar
     

  • Woodruff RH, Fruttiger M, Richardson WD, Franklin RJ. Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci. 2004;25(2):252–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zimmermann J, Emrich M, Krauthausen M, Saxe S, Nitsch L, Heneka MT, Campbell IL, Muller M. IL-17A promotes granulocyte infiltration, myelin loss, microglia activation, and behavioral deficits during cuprizone-induced demyelination. Mol Neurobiol. 2018;55(2):946–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin W, Kemper A, Dupree JL, Harding HP, Ron D, Popko B. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain. 2006;129(Pt 5):1306–18.

    PubMed 
    Article 

    Google Scholar
     

  • Lin W, Bailey SL, Ho H, Harding HP, Ron D, Miller SD, Popko B. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J Clin Invest. 2007;117(2):448–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao X, Gillig TA, Ye P, D’Ercole AJ, Matsushima GK, Popko B. Interferon-gamma protects against cuprizone-induced demyelination. Mol Cell Neurosci. 2000;16(4):338–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pons V, Laflamme N, Prefontaine P, Rivest S. Role of macrophage colony-stimulating factor receptor on the proliferation and survival of microglia following systemic nerve and cuprizone-induced injuries. Front Immunol. 2020;11:47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Janssen K, Rickert M, Clarner T, Beyer C, Kipp M. Absence of CCL2 and CCL3 ameliorates central nervous system grey matter but not white matter demyelination in the presence of an intact blood-brain barrier. Mol Neurobiol. 2016;53(3):1551–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, Yong VW, Stys PK, Tremblay ME, Rivest S. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med. 2015;212(4):481–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Remington LT, Babcock AA, Zehntner SP, Owens T. Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol. 2007;170(5):1713–24.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindner M, Trebst C, Heine S, Skripuletz T, Koutsoudaki PN, Stangel M. The chemokine receptor CXCR2 is differentially regulated on glial cells in vivo but is not required for successful remyelination after cuprizone-induced demyelination. Glia. 2008;56(10):1104–13.

    PubMed 
    Article 

    Google Scholar
     

  • Liu L, Belkadi A, Darnall L, Hu T, Drescher C, Cotleur AC, Padovani-Claudio D, He T, Choi K, Lane TE, et al. CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nat Neurosci. 2010;13(3):319–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krauthausen M, Saxe S, Zimmermann J, Emrich M, Heneka MT, Muller M. CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. J Neuroinflammation. 2014;11:109.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Trebst C, Heine S, Lienenklaus S, Lindner M, Baumgartner W, Weiss S, Stangel M. Lack of interferon-beta leads to accelerated remyelination in a toxic model of central nervous system demyelination. Acta Neuropathol. 2007;114(6):587–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schmidt H, Raasch J, Merkler D, Klinker F, Krauss S, Bruck W, Prinz M. Type I interferon receptor signalling is induced during demyelination while its function for myelin damage and repair is redundant. Exp Neurol. 2009;216(2):306–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mana P, Linares D, Fordham S, Staykova M, Willenborg D. Deleterious role of IFNgamma in a toxic model of central nervous system demyelination. Am J Pathol. 2006;168(5):1464–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kang Z, Liu L, Spangler R, Spear C, Wang C, Gulen MF, Veenstra M, Ouyang W, Ransohoff RM, Li X. IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination. J Neurosci. 2012;32(24):8284–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D, Matsushima GK, Ting JP. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci. 2010;30(47):15811–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1beta promotes repair of the CNS. J Neurosci. 2001;21(18):7046–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, Itoh T. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation. 2012;9:227.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marriott MP, Emery B, Cate HS, Binder MD, Kemper D, Wu Q, Kolbe S, Gordon IR, Wang H, Egan G, et al. Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair. Glia. 2008;56(6):686–98.

    PubMed 
    Article 

    Google Scholar
     

  • Plant SR, Iocca HA, Wang Y, Thrash JC, O’Connor BP, Arnett HA, Fu YX, Carson MJ, Ting JP. Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein. J Neurosci. 2007;27(28):7429–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Copray JC, Kust BM, Mantingh-Otter I, Boddeke HW. p75NTR independent oligodendrocyte death in cuprizone-induced demyelination in C57BL/6 mice. Neuropathol Appl Neurobiol. 2005;31(6):600–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iocca HA, Plant SR, Wang Y, Runkel L, O’Connor BP, Lundsmith ET, Hahm K, van Deventer HW, Burkly LC, Ting JP. TNF superfamily member TWEAK exacerbates inflammation and demyelination in the cuprizone-induced model. J Neuroimmunol. 2008;194(1–2):97–106.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC. PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis. 2005;19(1–2):171–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fitzpatrick FA. Cyclooxygenase enzymes: regulation and function. Curr Pharm Des. 2004;10(6):577–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination. Prostaglandins Leukot Essent Fatty Acids. 2011;85(1):29–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davies NM, McLachlan AJ, Day RO, Williams KM. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet. 2000;38(3):225–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dore-Duffy P, Donaldson JO, Koff T, Longo M, Perry W. Prostaglandin release in multiple sclerosis: correlation with disease activity. Neurology. 1986;36(12):1587–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dore-Duffy P, Ho SY, Donovan C. Cerebrospinal fluid eicosanoid levels: endogenous PGD2 and LTC4 synthesis by antigen-presenting cells that migrate to the central nervous system. Neurology. 1991;41(2 ( Pt 1)):322–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rose JW, Hill KE, Watt HE, Carlson NG. Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J Neuroimmunol. 2004;149(1–2):40–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carlson NG, Hill KE, Tsunoda I, Fujinami RS, Rose JW. The pathologic role for COX-2 in apoptotic oligodendrocytes in virus induced demyelinating disease: implications for multiple sclerosis. J Neuroimmunol. 2006;174(1–2):21–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liddelow SA. Development of the choroid plexus and blood-CSF barrier. Front Neurosci. 2015;9:32.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fleischer V, Gonzalez-Escamilla G, Ciolac D, Albrecht P, Kury P, Gruchot J, Dietrich M, Hecker C, Muntefering T, Bock S, et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc Natl Acad Sci U S A. 2021;118(36):e2025000118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ricigliano VAG, Morena E, Colombi A, Tonietto M, Hamzaoui M, Poirion E, Bottlaender M, Gervais P, Louapre C, Bodini B, et al. Choroid plexus enlargement in inflammatory multiple sclerosis: 3.0-T MRI and Translocator Protein PET Evaluation. Radiology. 2021;301(1):166–77.

    PubMed 
    Article 

    Google Scholar
     

  • Solar P, Zamani A, Kubickova L, Dubovy P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17(1):35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Greiner T, Kipp M. What guides peripheral immune cells into the central nervous system? Cells. 2021;10(8):2041.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khaw YM, Tierney A, Cunningham C, Soto-Diaz K, Kang E, Steelman AJ, Inoue M. Astrocytes lure CXCR2-expressing CD4(+) T cells to gray matter via TAK1-mediated chemokine production in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A. 2021;118(8).

  • Sun B, Li F, Lai S, Zhang X, Wang H, Li Y, Wang W, Chen Y, Liu B, Zheng Y. Inhibition of CXCR2 alleviates the development of abdominal aortic aneurysm in Apo E-/- mice. Acta Cir Bras. 2021;36(1):e360105.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hiremath MM, Chen VS, Suzuki K, Ting JP, Matsushima GK. MHC class II exacerbates demyelination in vivo independently of T cells. J Neuroimmunol. 2008;203(1):23–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duarte J, Carrie N, Oliveira VG, Almeida C, Agua-Doce A, Rodrigues L, Simas JP, Mars LT, Graca L. T cell apoptosis and induction of Foxp3+ regulatory T cells underlie the therapeutic efficacy of CD4 blockade in experimental autoimmune encephalomyelitis. J Immunol. 2012;189(4):1680–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roggendorf W, Sasaki S, Ludwig H. Light microscope and immunohistological investigations on the brain of Borna disease virus-infected rabbits. Neuropathol Appl Neurobiol. 1983;9(4):287–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sen MK, Almuslehi MSM, Gyengesi E, Myers SJ, Shortland PJ, Mahns DA, Coorssen JR. Suppression of the peripheral immune system limits the central immune response following cuprizone-feeding: relevance to modelling multiple sclerosis. Cells. 2019;8(11):1314.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solti I, Kvell K, Talaber G, Veto S, Acs P, Gallyas F Jr, Illes Z, Fekete K, Zalan P, Szanto A, et al. Thymic Atrophy and Apoptosis of CD4+CD8+ Thymocytes in the Cuprizone Model of Multiple Sclerosis. PLoS ONE. 2015;10(6):e0129217.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hesse A, Wagner M, Held J, Bruck W, Salinas-Riester G, Hao Z, Waisman A, Kuhlmann T. In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis. 2010;37(2):362–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Plemel JR, Caprariello AV, Keough MB, Henry TJ, Tsutsui S, Chu TH, Schenk GJ, Klaver R, Yong VW, Stys PK. Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. J Cell Biol. 2017;216(4):1163–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Connor JR, Menzies SL, Burdo JR, Boyer PJ. Iron and iron management proteins in neurobiology. Pediatr Neurol. 2001;25(2):118–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tien M, Svingen BA, Aust SD. Superoxide dependent lipid peroxidation. Fed Proc. 1981;40(2):179–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Benedetti A, Comporti M, Esterbauer H. Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta. 1980;620(2):281–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yau TM. Mutagenicity and cytotoxicity of malonaldehyde in mammalian cells. Mech Ageing Dev. 1979;11(2):137–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pandur E, Pap R, Varga E, Janosa G, Komoly S, Forizs J, Sipos K. Relationship of iron metabolism and short-term cuprizone treatment of C57BL/6 Mice. Int J Mol Sci. 2019;20(9):2257.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Varga E, Pandur E, Abraham H, Horvath A, Acs P, Komoly S, Miseta A, Sipos K. Cuprizone administration alters the iron metabolism in the mouse model of multiple sclerosis. Cell Mol Neurobiol. 2018;38(5):1081–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta. 1985;839(1):62–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 1982;710(2):197–211.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Forcina GC, Dixon SJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics. 2019;19(18):e1800311.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bridges RJ, Natale NR, Patel SA. System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012;165(1):20–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med. 1998;188(5):919–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 2012;11(3):290–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288(43):31268–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vanlangenakker N, Bertrand MJ, Bogaert P, Vandenabeele P, Vanden Berghe T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2011;2:e230.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54(1):133–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier JM, Dobson RC, Webb AI, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci U S A. 2014;111(42):15072–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471(7338):363–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F, Libert C, et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012;3:e437.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 2015;10(11):1836–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren Y, Su Y, Sun L, He S, Meng L, Liao D, Liu X, Ma Y, Liu C, Li S, et al. Discovery of a highly potent, selective, and metabolically stable inhibitor of Receptor-Interacting Protein 1 (RIP1) for the treatment of systemic inflammatory response syndrome. J Med Chem. 2017;60(3):972–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang S, Su Y, Ying Z, Guo D, Pan C, Guo J, Zou Z, Wang L, Zhang Z, Jiang Z, et al. RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation. Proc Natl Acad Sci U S A. 2019;116(12):5675–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xie Y, Chen H, Luo D, Yang X, Yao J, Zhang C, Lv L, Guo Z, Deng C, Li Y, et al. Inhibiting necroptosis of spermatogonial stem cell as a novel strategy for male fertility preservation. Stem Cells Dev. 2020;29(8):475–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012;148(1–2):228–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo F, Herrup K, Qi X, Yang Y. Inhibition of Drp1 hyper-activation is protective in animal models of experimental multiple sclerosis. Exp Neurol. 2017;292:21–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chang CR, Blackstone C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci. 2010;1201:34–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Estaquier J, Arnoult D. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ. 2007;14(6):1086–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo X, Sesaki H, Qi X. Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem J. 2014;461(1):137–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su YC, Qi X. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet. 2013;22(22):4545–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH. Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology. 2014;86:103–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moriwaki K, Farias Luz N, Balaji S, De Rosa MJ, O’Donnell CL, Gough PJ, Bertin J, Welsh RM, Chan FK. The mitochondrial phosphatase PGAM5 is dispensable for necroptosis but promotes inflammasome activation in macrophages. J Immunol. 2016;196(1):407–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moujalled DM, Cook WD, Murphy JM, Vaux DL. Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death Dis. 2014;5:e1086.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tait SW, Oberst A, Quarato G, Milasta S, Haller M, Wang R, Karvela M, Ichim G, Yatim N, Albert ML, et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 2013;5(4):878–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prochnicki T, Mangan MS, Latz E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Res 2016, 5.

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481(7381):278–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fantuzzi G, Dinarello CA. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol. 1999;19(1):1–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25(12):1285–98.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monteleone M, Stanley AC, Chen KW, Brown DL, Bezbradica JS, von Pein JB, Holley CL, Boucher D, Shakespear MR, Kapetanovic R, et al. Interleukin-1beta maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 2018;24(6):1425–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The pore-forming protein gasdermin d regulates interleukin-1 secretion from living macrophages. Immunity. 2018;48(1):35-44 e36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsuchiya K, Hosojima S, Hara H, Kushiyama H, Mahib MR, Kinoshita T, Suda T. Gasdermin D mediates the maturation and release of IL-1alpha downstream of inflammasomes. Cell Rep. 2021;34(12):108887.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsuchiya K, Nakajima S, Hosojima S, Thi Nguyen D, Hattori T, Le Manh T, Hori O, Mahib MR, Yamaguchi Y, Miura M, et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun. 2019;10(1):2091.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO, Lu JQ, Branton WG, Power C. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A. 2018;115(26):E6065–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Y, Fan H, Li X, Liu J, Qu X, Wu X, Liu M, Liu Z, Yao R. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1alpha pathway in a cuprizone-induced mouse model of demyelination. Exp Neurol. 2021;337:113593.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med. 2017;214(5):1351–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saito LB, Fernandes JP, Smith MJ, Doan MAL, Branton WG, Schmitt LM, Wuest M, Monaco MC, Major EO, Wuest F, et al. Intranasal anti-caspase-1 therapy preserves myelin and glucose metabolism in a model of progressive multiple sclerosis. Glia. 2021;69(1):216–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)