• LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ghosn E, Yoshimoto M, Nakauchi H, et al. Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development. 2019;146:15.

    Article 
    CAS 

    Google Scholar
     

  • Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu M, Silva-Sanchez A, Randall TD, et al. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol. 2020;89:6.


    Google Scholar
     

  • Feeney AJ. Predominance of the prototypic T15 anti-phosphorylcholine junctional sequence in neonatal pre-B cells. J Immunol. 1991;147(12):4343–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Arnold LW, Pennell CA, McCray SK, et al. Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J Exp Med. 1994;179(5):1585–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chumley MJ, Dal Porto JM, Kawaguchi S, et al. A VH11V kappa 9 B cell antigen receptor drives generation of CD5+ B cells both in vivo and in vitro. J Immunol. 2000;164(9):4586–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baumgarth N, Herman OC, Jager GC, et al. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc Natl Acad Sci U S A. 1999;96(5):2250–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kroese FG, Butcher EC, Stall AM, et al. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol. 1989;1(1):75–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • O’Garra A, Chang R, Go N, et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol. 1992;22(3):711–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate response activator B cells protect against microbial sepsis. Science. 2012;335(6068):597–601.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao J, Ma X, Gu W, et al. Novel functions of murine B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol. 2012;42(4):982–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hardy RR, Hayakawa K. Perspectives on fetal derived CD5+ B1 B cells. Eur J Immunol. 2015;45(11):2978–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Montecino-Rodriguez E, Fice M, Casero D, et al. Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity. 2016;45(3):527–39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Montecino-Rodriguez E, Dorshkind K. B-1 B cell development in the fetus and adult. Immunity. 2012;36(1):13–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ, et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci U S A. 2011;108(4):1468–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Godin IE, Garcia-Porrero JA, Coutinho A, et al. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature. 1993;364(6432):67–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Andres B, Gonzalo P, Minguet S, et al. The first 3 days of B-cell development in the mouse embryo. Blood. 2002;100(12):4074–81.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Melchers F. Murine embryonic B lymphocyte development in the placenta. Nature. 1979;277(5693):219–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kantor AB, Stall AM, Adams S, et al. Differential development of progenitor activity for three B-cell lineages. Proc Natl Acad Sci U S A. 1992;89(8):3320–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solvason N, Chen X, Shu F, et al. The fetal omentum in mice and humans. A site enriched for precursors of CD5 B cells early in development. Ann N Y Acad Sci. 1992;651:10–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solvason N, Kearney JF. The human fetal omentum: a site of B cell generation. J Exp Med. 1992;175(2):397–404.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solvason N, Lehuen A, Kearney JF. An embryonic source of Ly1 but not conventional B cells. Int Immunol. 1991;3(6):543–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ghosn EE, Sadate-Ngatchou P, Yang Y, et al. Distinct progenitors for B-1 and B-2 cells are present in adult mouse spleen. Proc Natl Acad Sci U S A. 2011;108(7):2879–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Montecino-Rodriguez E, Leathers H, Dorshkind K. Identification of a B-1 B cell-specified progenitor. Nat Immunol. 2006;7(3):293–301.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lalor PA, Herzenberg LA, Adams S, et al. Feedback regulation of murine Ly-1 B cell development. Eur J Immunol. 1989;19(3):507–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kikuchi K, Kondo M. Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. P Natl Acad Sci USA. 2006;103(47):17852–7.

    CAS 
    Article 

    Google Scholar
     

  • Sawai CM, Babovic S, Upadhaya S, et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity. 2016;45(3):597–609.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hayakawa K, Hardy RR, Herzenberg LA, et al. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med. 1985;161(6):1554–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hayakawa K, Hardy RR, Stall AM, et al. Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage. Eur J Immunol. 1986;16(10):1313–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lalor PA, Stall AM, Adams S, et al. Permanent alteration of the murine Ly-1 B repertoire due to selective depletion of Ly-1 B cells in neonatal animals. Eur J Immunol. 1989;19(3):501–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stall AM, Farinas MC, Tarlinton DM, et al. Ly-1 B-cell clones similar to human chronic lymphocytic leukemias routinely develop in older normal mice and young autoimmune (New Zealand Black-related) animals. Proc Natl Acad Sci U S A. 1988;85(19):7312–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haas KM, Poe JC, Steeber DA, et al. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity. 2005;23(1):7–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park S, Nahm MH. Older adults have a low capacity to opsonize pneumococci due to low IgM antibody response to pneumococcal vaccinations. Infect Immun. 2011;79(1):314–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee-Chang C, Bodogai M, Moritoh K, et al. Accumulation of 4–1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124(9):1450–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee-Chang C, Bodogai M, Moritoh K, et al. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. J Immunol. 2016;196(8):3385–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bodogai M, O’Connell J, Kim K, et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med. 2018;10:467.

    Article 
    CAS 

    Google Scholar
     

  • Holodick NE, Vizconde T, Hopkins TJ, et al. Age-Related Decline in Natural IgM function: diversification and selection of the B-1a Cell Pool with Age. J Immunol. 2016;196(10):4348–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang Y, Wang C, Yang Q, et al. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. Elife. 2015;4:e09083.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kreslavsky T, Vilagos B, Tagoh H, et al. Essential role for the transcription factor Bhlhe41 in regulating the development, self-renewal and BCR repertoire of B-1a cells. Nat Immunol. 2017;18(4):442–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heng TS, Painter MW. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008;9(10):1091–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mabbott NA, Gray D. Identification of co-expressed gene signatures in mouse B1, marginal zone and B2 B-cell populations. Immunology. 2014;141(1):79–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagai Y, Shimazu R, Ogata H, et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood. 2002;99(5):1699–705.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rodig SJ, Kutok JL, Paterson JC, et al. The pre-B-cell receptor associated protein VpreB3 is a useful diagnostic marker for identifying c-MYC translocated lymphomas. Haematologica. 2010;95(12):2056–62.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mallampati S, Sun B, Lu Y, et al. Integrated genetic approaches identify the molecular mechanisms of Sox4 in early B-cell development: intricate roles for RAG1/2 and CK1epsilon. Blood. 2014;123(26):4064–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li YS, Wasserman R, Hayakawa K, et al. Identification of the earliest B lineage stage in mouse bone marrow. Immunity. 1996;5(6):527–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hayakawa K, Tarlinton D, Hardy RR. Absence of MHC class II expression distinguishes fetal from adult B lymphopoiesis in mice. J Immunol. 1994;152(10):4801–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Lam KP, Stall AM. Major histocompatibility complex class II expression distinguishes two distinct B cell developmental pathways during ontogeny. J Exp Med. 1994;180(2):507–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tung JW, Mrazek MD, Yang Y, et al. Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc Natl Acad Sci U S A. 2006;103(16):6293–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu Y, Wang J, Khaled W, et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J Exp Med. 2012;209(13):2467–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Setty M, Kiseliovas V, Levine J, et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol. 2019;37(4):451–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van Ness BG, Weigert M, Coleclough C, et al. Transcription of the unrearranged mouse C kappa locus: sequence of the initiation region and comparison of activity with a rearranged V kappa-C kappa gene. Cell. 1981;27(3 Pt 2):593–602.

    PubMed 
    Article 

    Google Scholar
     

  • Wong JB, Hewitt SL, Heltemes-Harris LM, et al. B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat Commun. 2019;10(1):4768.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Briles DE, Forman C, Hudak S, et al. Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J Exp Med. 1982;156(4):1177–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kyaw T, Tay C, Krishnamurthi S, et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ Res. 2011;109(8):830–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosenfeld SM, Perry HM, Gonen A, et al. B-1b Cells Secrete Atheroprotective IgM and Attenuate Atherosclerosis. Circ Res. 2015;117(3):e28-39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498–503.

    CAS 
    PubMed 

    Google Scholar
     

  • Klement K, Melle C, Murzik U, et al. Accumulation of annexin A5 at the nuclear envelope is a biomarker of cellular aging. Mech Ageing Dev. 2012;133(7):508–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saitou M, Lizardo DY, Taskent RO, et al. An evolutionary transcriptomics approach links CD36 to membrane remodeling in replicative senescence. Mol Omics. 2018;14(4):237–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moolmuang B, Tainsky MA. CREG1 enhances p16(INK4a) -induced cellular senescence. Cell Cycle. 2011;10(3):518–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen M, Yang W, Li X, et al. Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains. Oncotarget. 2016;7(8):8466–80.

    PubMed 
    Article 

    Google Scholar
     

  • Goldstein LD, Chen YJ, Wu J, et al. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol. 2019;2:304.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kreslavsky T, Wong JB, Fischer M, et al. Control of B-1a cell development by instructive BCR signaling. Curr Opin Immunol. 2018;51:24–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang H, Clarke SH. Positive selection focuses the VH12 B-cell repertoire towards a single B1 specificity with survival function. Immunol Rev. 2004;197:51–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ghosn EE, Yang Y, Tung J, et al. CD11b expression distinguishes sequential stages of peritoneal B-1 development. Proc Natl Acad Sci U S A. 2008;105(13):5195–200.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi YS, Dieter JA, Rothaeusler K, et al. B-1 cells in the bone marrow are a significant source of natural IgM. Eur J Immunol. 2012;42(1):120–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Honjo K, Won WJ, King RG, et al. Fc Receptor-Like 6 (FCRL6) Discloses Progenitor B Cell Heterogeneity That Correlates With Pre-BCR Dependent and Independent Pathways of Natural Antibody Selection. Front Immunol. 2020;11:89.

    Article 
    CAS 

    Google Scholar
     

  • Lin WC, Desiderio S. V(D)J recombination and the cell cycle. Immunol Today. 1995;16(6):279–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hardy RR, Li YS, Allman D, et al. B-cell commitment, development and selection. Immunol Rev. 2000;175:23–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109(Suppl):S45-55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beaudin AE, Boyer SW, Perez-Cunningham J, et al. A Transient developmental hematopoietic stem cell gives rise to innate-like B and T Cells. Cell Stem Cell. 2016;19(6):768–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tung JW, Herzenberg LA. Unraveling B-1 progenitors. Curr Opin Immunol. 2007;19(2):150–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2(72):re3.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277(51):49982–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moore KJ, El Khoury J, Medeiros LA, et al. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. J Biol Chem. 2002;277(49):47373–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wilkinson K, Boyd JD, Glicksman M, et al. A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J Biol Chem. 2011;286(40):34914–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000;105(8):1049–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goudriaan JR, Dahlmans VE, Teusink B, et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res. 2003;44(12):2270–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hajri T, Han XX, Bonen A, et al. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest. 2002;109(10):1381–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • El Khoury JB, Moore KJ, Means TK, et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med. 2003;197(12):1657–66.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ferrando AA, Lopez-Otin C. Clonal evolution in leukemia. Nat Med. 2017;23(10):1135–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hayakawa K, Formica AM, Brill-Dashoff J, et al. Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression. J Exp Med. 2016;213(13):3007–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hayakawa K, Formica AM, Colombo MJ, et al. Loss of a chromosomal region with synteny to human 13q14 occurs in mouse chronic lymphocytic leukemia that originates from early-generated B-1 B cells. Leukemia. 2016;30(7):1510–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Upadhye A, Srikakulapu P, Gonen A, et al. Diversification and CXCR4-dependent establishment of the bone marrow b-1a cell pool governs atheroprotective igm production linked to human coronary atherosclerosis. Circ Res. 2019;125(10):e55–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prohaska TA, Que X, Diehl CJ, et al. Massively Parallel Sequencing of Peritoneal and Splenic B Cell Repertoires Highlights Unique Properties of B-1 Cell Antibodies. J Immunol. 2018;200(5):1702–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Visual Exp. 2010;3:5.


    Google Scholar
     

  • Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst. 2019;8(4):281.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Waskom ML. seaborn: statistical data visualization. The journal of open source sofrware. 2021;6(60):1–4.


    Google Scholar
     

  • Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2018;7:56.


    Google Scholar
     

  • Blondel VD, Guillaume JL, Lambiotte R, et al. Fast unfolding of communities in large networks. J Stat Mech-Theory Exp. 2008;34:615.


    Google Scholar
     

  • Miao Z, Moreno P, Huang N, et al. Putative cell type discovery from single-cell gene expression data. Nat Methods. 2020;17(6):621–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Finak G, McDavid A, Yajima M, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:56.

    Article 
    CAS 

    Google Scholar
     

  • Haghverdi L, Buttner M, Wolf FA, et al. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016;13(10):845–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wolf FA, Hamey FK, Plass M, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20(1):59.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Team I. immunarch: An R Package for Painless Analysis of Large-Scale immune Repertoire Data. Zenodo. 2019.

  • Yang Y, Li X, Ma Z, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12(1):525.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)