• Wang J, Li BX, Ge PP, Li J, Wang Q, Gao GF, Qiu XB, Liu CH. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat Immunol. 2015;16(3):237–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bae S, Kim YJ, Kim MJ, Kim JH, Yun SC, Jung J, Kim MJ, Chong YP, Kim SH, Choi SH, et al. Risk of tuberculosis in patients with cancer treated with immune checkpoint inhibitors: a nationwide observational study. J Immunother Cancer. 2021;9(9):e002960.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Everatt R, Kuzmickiene I, Davidaviciene E, Cicenas S. Incidence of lung cancer among patients with tuberculosis: a nationwide cohort study in Lithuania. Int J Tuberc Lung Dis. 2016;20(6):757–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ho JC, Leung CC. Management of co-existent tuberculosis and lung cancer. Lung Cancer. 2018;122:83–7.

    PubMed 
    Article 

    Google Scholar
     

  • Oh CM, Roh YH, Lim D, Kong HJ, Cho H, Hwangbo B, Won YJ, Jung KW, Oh K. Pulmonary tuberculosis is associated with elevated risk of lung cancer in Korea: the Nationwide Cohort Study. J Cancer. 2020;11(7):1899–906.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu CY, Hu HY, Pu CY, Huang N, Shen HC, Li CP, Chou YJ. Pulmonary tuberculosis increases the risk of lung cancer: a population-based cohort study. Cancer. 2011;117(3):618–24.

    PubMed 
    Article 

    Google Scholar
     

  • Luo YH, Wu CH, Wu WS, Huang CY, Su WJ, Tsai CM, Lee YC, Perng RP, Chen YM. Association between tumor epidermal growth factor receptor mutation and pulmonary tuberculosis in patients with adenocarcinoma of the lungs. J Thorac Oncol. 2012;7(2):299–305.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Simsek A, Kalemci S, Mutlu N, Yapici I, Acet Ozturk NA. Lung cancer diagnosed with Mycobacterium tuberculosis or nontuberculosis mycobacteria concomitantly. Tuberk Toraks. 2017;65(4):291–5.

    PubMed 
    Article 

    Google Scholar
     

  • Khuder SA. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer. 2001;31(2–3):139–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ho LJ, Yang HY, Chung CH, Chang WC, Yang SS, Sun CA, Chien WC, Su RY. Increased risk of secondary lung cancer in patients with tuberculosis: a nationwide, population-based cohort study. PLoS ONE. 2021;16(5): e0250531.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parker CS, Siracuse CG, Litle VR. Identifying lung cancer in patients with active pulmonary tuberculosis. J Thorac Dis. 2018;10(Suppl 28):S3392–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hwang SY, Kim JY, Lee HS, Lee S, Kim D, Kim S, Hyun JH, Shin JI, Lee KH, Han SH, et al. Pulmonary tuberculosis and risk of lung cancer: a systematic review and meta-analysis. J Clin Med. 2022;11(3):765.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • An SJ, Kim YJ, Han SS, Heo J. Effects of age on the association between pulmonary tuberculosis and lung cancer in a South Korean cohort. J Thorac Dis. 2020;12(3):375–82.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol. 2010;2(3): a001016.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liang HY, Li XL, Yu XS, Guan P, Yin ZH, He QC, Zhou BS. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer. 2009;125(12):2936–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Engels EA, Shen M, Chapman RS, Pfeiffer RM, Yu YY, He X, Lan Q. Tuberculosis and subsequent risk of lung cancer in Xuanwei, China. Int J Cancer. 2009;124(5):1183–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kunio A. Excess incidence of lung cancer among pulmonary tuberculosis patients. Jpn J Clin Oncol. 1993;23:205–20.


    Google Scholar
     

  • Hong S, Mok Y, Jeon C, Jee SH, Samet JM. Tuberculosis, smoking and risk for lung cancer incidence and mortality. Int J Cancer. 2016;139(11):2447–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park HY, Kang D, Shin SH, Choi H, Jang SH, Lee CH, Kim H, Kwon OJ, Rhee CK, Cho J. Pulmonary tuberculosis and the incidence of lung cancer among patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2021. https://doi.org/10.1513/AnnalsATS.202010-1240OC.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furlow B. Tobacco control, lung cancer, and tuberculosis in Singapore. Lancet Respir Med. 2018;6(10):741–2.

    PubMed 
    Article 

    Google Scholar
     

  • Steinitz R. Pulmonary tuberculosis and carcinoma of the lung. A survey from two population-based disease registers. Am Rev Respir Dis. 1965;92(5):758–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Horikoshi H, Hanajima T, Morita T, Shiraishi T, Chikauchi Y, Hayakawa K. Current status of miliary tuberculosis in Japan—analyses of the factors related to the manifestation and death of miliary tuberculosis. Kekkaku. 1983;58(1):15–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Humphries MJ, Byfield SP, Darbyshire JH, Davies PD, Nunn AJ, Citron KM, Fox W. Deaths occurring in newly notified patients with pulmonary tuberculosis in England and Wales. Br J Dis Chest. 1984;78(2):149–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao YT, Zheng W, Gao RN, Jin F. Tobacco smoking and its effect on health in China. IARC Sci Publ. 1991;105:62–7.


    Google Scholar
     

  • Clemmesen J, Hjalgrim-Jensen S. Is isonicotinic acid hydrazide (INH) carcinogenic to man? A 24-year follow-up of 3371 tuberculosis cases. Ecotoxicol Environ Saf. 1979;3(4):439–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A. Rook GA Lung remodeling in pulmonary tuberculosis. J Infect Dis. 2005;192(7):1201–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saunders BM. Britton WJ Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol. 2007;85(2):103–11.

    PubMed 
    Article 

    Google Scholar
     

  • Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 2007;5(1):39–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yakar F, Yakar A, Buyukpinarbasili N, Erelel M. Does every necrotizing granulomatous inflammation identified by NSCLC resection material require treatment? Med Sci Monit. 2016;22:1218–22.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dagaonkar RS, Choong CV, Asmat AB, Ahmed DB, Chopra A, Lim AY, Tai DY, Kor AC, Goh SK, Abisheganaden J, et al. Significance of coexistent granulomatous inflammation and lung cancer. J Clin Pathol. 2017;70(4):337–41.

    PubMed 
    Article 

    Google Scholar
     

  • Konigshoff M. Lung cancer in pulmonary fibrosis: tales of epithelial cell plasticity. Respiration. 2011;81(5):353–8.

    PubMed 
    Article 

    Google Scholar
     

  • Nalbandian A, Yan BS, Pichugin A, Bronson RT, Kramnik I. Lung carcinogenesis induced by chronic tuberculosis infection: the experimental model and genetic control. Oncogene. 2009;28(17):1928–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev. 2008;226:191–204.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang M, Zhou YY, Zhang YL. High Expression of TLR2 in the serum of patients with tuberculosis and lung cancer, and can promote the progression of lung cancer. Math Biosci Eng. 2019;17(3):1959–72.

    PubMed 
    Article 

    Google Scholar
     

  • Pathak S, Gupta G, Gilhotra RM. The role of diazepam in epigenetics: from the molecular level to clinical implications. Adv Mind Body Med. 2021;35(1):25–33.

    PubMed 

    Google Scholar
     

  • Gagliardo R, Chanez P, Profita M, Bonanno A, Albano GD, Montalbano AM, Pompeo F, Gagliardo C, Merendino AM, Gjomarkaj M. IkappaB kinase-driven nuclear factor-kappaB activation in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2011;128(3):635-45.e1-2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cramer F, Christensen CL, Poulsen TT, Badding MA, Dean DA, Poulsen HS. Insertion of a nuclear factor kappa B DNA nuclear-targeting sequence potentiates suicide gene therapy efficacy in lung cancer cell lines. Cancer Gene Ther. 2012;19(10):675–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK, et al. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact. 2021;345:109568.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pattanaik KP, Ganguli G, Naik SK, Sonawane A. Mycobacterium tuberculosis EsxL induces TNF-alpha secretion through activation of TLR2 dependent MAPK and NF-kappaB pathways. Mol Immunol. 2021;130:133–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Asaad M, Kaisar Ali M, Abo-Kadoum MA, Lambert N, Gong Z, Wang H, Uae M, Nazou SAE, Kuang Z, Xie J. Mycobacterium tuberculosis PPE10 (Rv0442c) alters host cell apoptosis and cytokine profile via linear ubiquitin chain assembly complex HOIP-NF-kappaB signaling axis. Int Immunopharmacol. 2021;94:107363.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gupta PK, Tripathi D, Kulkarni S, Rajan MG. Mycobacterium tuberculosis H37Rv infected THP-1 cells induce epithelial mesenchymal transition (EMT) in lung adenocarcinoma epithelial cell line (A549). Cell Immunol. 2016;300:33–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gershman E, Zer A, Pertzov B, Shtraichman O, Shitenberg D, Heching M, Rosengarten D, Kramer M. Characteristics of lung cancer in idiopathic pulmonary fibrosis with single lung transplant versus non-transplanted patients: a retrospective observational study. BMJ Open Respir Res. 2020. https://doi.org/10.1136/bmjresp-2020-000566.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, Shi Y, Zhang L, Gao GF, Liu CH. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2019;16(4):380–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, et al. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun. 2017;8(1):244.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Etna MP, Giacomini E, Severa M, Coccia EM. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis. Semin Immunol. 2014;26(6):543–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248(3):171–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13(11):1382–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Di Carlo E, Forni G, Lollini P, Colombo MP, Modesti A, Musiani P. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood. 2001;97(2):339–45.

    PubMed 
    Article 

    Google Scholar
     

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matsuyama W, Kubota R, Hashiguchi T, Momi H, Kawabata M, Nakagawa M, Arimura K, Osame M. Purified protein derivative of tuberculin upregulates the expression of vascular endothelial growth factor in T lymphocytes in vitro. Immunology. 2002;106(1):96–101.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holla S, Ghorpade DS, Singh V, Bansal K, Balaji KN. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-alpha-induced apoptosis. Mol Cancer. 2014;13:210.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Woo SJ, Kim Y, Jung H, Lee JJ, Hong JY. Tuberculous fibrosis enhances tumorigenic potential via the NOX4-autophagy axis. Cancers (Basel). 2021;13(4):687.

    CAS 
    Article 

    Google Scholar
     

  • Arrieta O, Molina-Romero C, Cornejo-Granados F, Marquina-Castillo B, Aviles-Salas A, Lopez-Leal G, Cardona AF, Ortega-Gomez A, Orozco-Morales M, Ochoa-Leyva A, et al. Clinical and pathological characteristics associated with the presence of the IS6110 Mycobacterim tuberculosis transposon in neoplastic cells from non-small cell lung cancer patients. Sci Rep. 2022;12(1):2210.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li X, Wang M, Ming S, Liang Z, Zhan X, Cao C, Liang S, Liu Q, Shang Y, Lao J, et al. TARM-1 is critical for macrophage activation and Th1 response in Mycobacterium tuberculosis infection. J Immunol. 2021. https://doi.org/10.4049/jimmunol.2001037.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Liao M, Wang W, Zhang M, Chen Q, Guo J, Peng B, Huang J, Liu H, Yahagi A, et al. CD157 confers host resistance to Mycobacterium tuberculosis via TLR2-CD157-PKCzeta-induced reactive oxygen species production. MBio. 2019. https://doi.org/10.1128/mBio.01949-19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin DM, Yang CS, Lee JY, Lee SJ, Choi HH, Lee HM, Yuk JM, Harding CV, Jo EK. Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C zeta in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol. 2008;10(9):1893–905.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwiatkowska S, Szkudlarek U, Luczynska M, Nowak D, Zieba M. Elevated exhalation of hydrogen peroxide and circulating IL-18 in patients with pulmonary tuberculosis. Respir Med. 2007;101(3):574–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang RR, Meng NN, Liu C, Li KL, Wang MX, Lv ZB, Chen SY, Guo X, Wang XK, Wang Q, et al. PDB-1 from Potentilla discolor Bunge induces apoptosis and autophagy by downregulating the PI3K/Akt/mTOR signaling pathway in A549 cells. Biomed Pharmacother. 2020;129:110378.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akaike T. Host defense and oxidative stress signaling in bacterial infection. Nihon Saikingaku Zasshi. 2015;70(3):339–49.

    PubMed 
    Article 

    Google Scholar
     

  • Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, Gabrielli A, Sanduzzi A, Avvediemento EV. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS ONE. 2010;5(11): e14003.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Agrawal A, Mabalirajan U. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol. 2016;310(2):L103–13.

    PubMed 
    Article 

    Google Scholar
     

  • Kim SJ, Cheresh P, Jablonski RP, Williams DB, Kamp DW. The role of mitochondrial DNA in mediating alveolar epithelial cell apoptosis and pulmonary fibrosis. Int J Mol Sci. 2015;16(9):21486–519.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schumacker PT, Gillespie MN, Nakahira K, Choi AM, Crouser ED, Piantadosi CA, Bhattacharya J. Mitochondria in lung biology and pathology: more than just a powerhouse. Am J Physiol Lung Cell Mol Physiol. 2014;306(11):L962–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ryu C, Sun H, Gulati M, Herazo-Maya JD, Chen Y, Osafo-Addo A, Brandsdorfer C, Winkler J, Blaul C, Faunce J, et al. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196(12):1571–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gu X, Wu G, Yao Y, Zeng J, Shi D, Lv T, Luo L, Song Y. Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway. Free Radic Biol Med. 2015;83:149–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, Koffa M, Giatromanolaki A, Boumpas DT, et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014;233(3):294–307.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, Hunter T. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell. 1991;64(3):573–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meyer M, Pahl HL, Baeuerle PA. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem Biol Interact. 1994;91(2–3):91–100.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Timblin C, BeruBe K, Churg A, Driscoll K, Gordon T, Hemenway D, Walsh E, Cummins AB, Vacek P, Mossman B. Ambient particulate matter causes activation of the c-jun kinase/stress-activated protein kinase cascade and DNA synthesis in lung epithelial cells. Cancer Res. 1998;58(20):4543–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Chung YW, Jeong DW, Won JY, Choi EJ, Choi YH, Kim IY. H(2)O(2)-induced AP-1 activation and its effect on p21(WAF1/CIP1)-mediated G2/M arrest in a p53-deficient human lung cancer cell. Biochem Biophys Res Commun. 2002;293(4):1248–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys. 2003;410(1):177–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deng Y, Liu B, Mao W, Shen Y, Fu C, Gao L, Zhang S, Wu J, Li Q, Li T, et al. Regulatory roles of PGE2 in LPS-induced tissue damage in bovine endometrial explants. Eur J Pharmacol. 2019;852:207–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li T, Liu B, Guan H, Mao W, Wang L, Zhang C, Hai L, Liu K, Cao J. PGE2 increases inflammatory damage in Escherichia coli-infected bovine endometrial tissue in vitro via the EP4-PKA signaling pathway. Biol Reprod. 2019;100(1):175–86.

    PubMed 
    Article 

    Google Scholar
     

  • Jobin MC, Gottschalk M, Grenier D. Upregulation of prostaglandin E2 and matrix metalloproteinase 9 production by human macrophage-like cells: synergistic effect of capsular material and cell wall from Streptococcus suis. Microb Pathog. 2006;40(1):29–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krausse-Opatz B, Schmidt C, Fendrich U, Bialowons A, Kaever V, Zeidler H, Kuipers J, Kohler L. Production of prostaglandin E2 in monocytes stimulated in vitro by Chlamydia trachomatis, Chlamydophila pneumoniae, and Mycoplasma fermentans. Microb Pathog. 2004;37(3):155–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yun B, Lee H, Jayaraja S, Suram S, Murphy RC, Leslie CC. Prostaglandins from cytosolic phospholipase A2alpha/cyclooxygenase-1 pathway and mitogen-activated protein kinases regulate gene expression in Candida albicans-infected macrophages. J Biol Chem. 2016;291(13):7070–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martinez-Colon GJ, Moore BB. Prostaglandin E2 as a regulator of immunity to pathogens. Pharmacol Ther. 2018;185:135–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jontvedt Jorgensen M, Jenum S, Tonby K, Mortensen R, Walzl G, Du Plessis N, Dyrhol-Riise AM. Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors. J Leukoc Biol. 2021;110(1):177–86.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liu H, Xiong X, Zhai W, Zhu T, Zhu X, Zhu Y, Peng Y, Zhang Y, Wang J, Chen H, et al. Upregulation of cytokines and differentiation of Th17 and Treg by dendritic cells: central role of prostaglandin E2 induced by Mycobacterium bovis. Microorganisms. 2020;8(2):195.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nore KG, Jorgensen MJ, Dyrhol-Riise AM, Jenum S, Tonby K. Elevated levels of anti-inflammatory eicosanoids and monocyte heterogeneity in Mycobacterium tuberculosis infection and disease. Front Immunol. 2020;11:57984.

    Article 
    CAS 

    Google Scholar
     

  • Pintha K, Chaiwangyen W, Yodkeeree S, Suttajit M, Tantipaiboonwong P. Suppressive effects of rosmarinic acid rich fraction from Perilla on oxidative stress, inflammation and metastasis ability in A549 cells exposed to PM via C-Jun, P-65-Nf-Kappab and Akt signaling pathways. Biomolecules. 2021;11(8):1090.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fosslien E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci. 2000;37(5):431–502.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kase S, Osaki M, Honjo S, Adachi H, Tsujitani S, Kaibara N, Ito H. Expression of cyclo-oxygenase-2 is correlated with high intratumoral microvessel density and low apoptotic index in human esophageal squamous cell carcinomas. Virchows Arch. 2003;442(2):129–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fosslien E. Review: molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis. Ann Clin Lab Sci. 2001;31(4):325–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Siemes C, Visser LE, Coebergh JW, Splinter TA, Witteman JC, Uitterlinden AG, Hofman A, Pols HA, Stricker BH. C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol. 2006;24(33):5216–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang Y, Ni K, Fang M, Li J. The effects of serum hs-CRP on the incidence of lung cancer in male patients with pulmonary tuberculosis. Iran J Public Health. 2019;48(7):1265–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajmal MR, Yaccha M, Malik MA, Rabbani MU, Ahmad I, Isalm N, Abdali N. Prevalence of nonalcoholic fatty liver disease (NAFLD) in patients of cardiovascular diseases and its association with hs-CRP and TNF-alpha. Indian Heart J. 2014;66(6):574–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Witschi H, Uyeminami D, Moran D, Espiritu I. Chemoprevention of tobacco-smoke lung carcinogenesis in mice after cessation of smoke exposure. Carcinogenesis. 2000;21(5):977–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hecht SS. Lung carcinogenesis by tobacco smoke. Int J Cancer. 2012;131(12):2724–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stavrides JC. Lung carcinogenesis: pivotal role of metals in tobacco smoke. Free Radic Biol Med. 2006;41(7):1017–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Witschi H, Espiritu I, Dance ST, Miller MS. A mouse lung tumor model of tobacco smoke carcinogenesis. Toxicol Sci. 2002;68(2):322–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keith RL, Miller YE, Hudish TM, Girod CE, Sotto-Santiago S, Franklin WA, Nemenoff RA, March TH, Nana-Sinkam SP, Geraci MW. Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Res. 2004;64(16):5897–904.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Molina-Romero C, Arrieta O, Hernández-Pando R. Tuberculosis and lung cancer. Salud Pública de México. 2019;61:286.

    PubMed 
    Article 

    Google Scholar
     

  • Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G, Walzl G, Kaufmann SH. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun. 2011;12(1):15–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang SK, Chien LH, Chang GC, Tsai YH, Su WC, Chen YM, Huang MS, Lin HC, Fang WT, Hung HH, et al. Programmed death ligand 2 gene polymorphisms are associated with lung adenocarcinoma risk in female never-smokers. Front Oncol. 2021;11:753788.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cao S, Li J, Lu J, Zhong R, Zhong H. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death Dis. 2019;10(2):44.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL, Baranowski TM, Tomko JA, Causgrove CM, Maiello P, et al. Pre-existing Simian immunodeficiency virus infection increases expression of T cell markers associated with activation during early Mycobacterium tuberculosis coinfection and impairs TNF responses in granulomas. J Immunol. 2021;207(1):175–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the next step towards successful combination immune checkpoint therapy in cancer. Front Immunol. 2021;12:699895.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bozzano F, Costa P, Passalacqua G, Dodi F, Ravera S, Pagano G, Canonica GW, Moretta L, De Maria A. Functionally relevant decreases in activatory receptor expression on NK cells are associated with pulmonary tuberculosis in vivo and persist after successful treatment. Int Immunol. 2009;21(7):779–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roberts T, Beyers N, Aguirre A, Walzl G. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta, and interleukin-4 mRNA levels. J Infect Dis. 2007;195(6):870–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J. 2021;35(9): e21853.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Novitskaya TA, Ariel BM, Dvorakovskaya IV, Avetisyan AO, Yablonsky PK. Morphological characteristics of pulmonary tuberculosis concurrent with lung cancer. Arkh Patol. 2021;83(3):19–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)