• Db H. The global chloromethane cycle: biosynthesis, biodegradation and metabolic role. Nat Prod Rep. 2000;17:337–48.

    Article 

    Google Scholar
     

  • Carpenter L, Reimann S, Burkholder J, Clerbaux C, Hall B, Hossaini R, Laube J, Yvon-Lewis S. Scientific assessment of ozone depletion: 2014. World Meteorological Organization Geneva. 2014;10.

  • Yokouchi Y, Takenaka A, Miyazaki Y, Kawamura K, Hiura T. Emission of methyl chloride from a fern growing in subtropical, temperate, and cool-temperate climate zones. J Geophys Res Biogeosci. 2015;120:1142–9.

    CAS 
    Article 

    Google Scholar
     

  • Rhew RC, Abel T. Measuring simultaneous production and consumption fluxes of methyl chloride and methyl bromide in annual temperate grasslands. Environ Sci Technol. 2007;41:7837–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rc R, Br M, Rf W. Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature. 2000;403:292–5.

    Article 
    CAS 

    Google Scholar
     

  • Derendorp L, Wishkerman A, Keppler F, Mcroberts C, Holzinger R, Röckmann T. Methyl chloride emissions from halophyte leaf litter: dependence on temperature and chloride content. Chemosphere. 2012;87:483–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoshida Y, Wang Y, Zeng T, Yantosca R. A three-dimensional global model study of atmospheric methyl chloride budget and distributions. J Geophys Res Atmos. 2004;109:D24309.

    Article 
    CAS 

    Google Scholar
     

  • Harper DB, Hamilton JT. The global cycles of the naturally-occurring monohalomethanes. In: Natural production of organohalogen compounds. Springer; 2003: 17–41.

  • Keppler F, Harper D, Röckmann T, Moore R, Hamilton J. New insight into the atmospheric chloromethane budget gained using gained using. Atmos Chem Phys. 2005;5:2403–11.

    CAS 
    Article 

    Google Scholar
     

  • Carpenter LJ, Reimann S, Burkholder JB, Clerbaux C, Hall BD, Hossaini R, Laube JC, Yvon-Lewis SA, Engel A, Montzka S. Update on ozone-depleting substances (Odss) and other gases of interest to the montreal protocol. Sci Assess Ozone Deplet. 2014:1.1–1.101.

  • Miller LG, Warner KL, Baesman SM, Oremland RS, Mcdonald IR, Radajewski S, Murrell JC. Degradation of methyl bromide and methyl chloride in soil microcosms: use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms. Geochim Cosmochim Acta. 2004;68:3271–83.

    CAS 
    Article 

    Google Scholar
     

  • Mcdonald I, Warner K, Mcanulla C, Woodall C, Oremland R, Murrell J. A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology. Environ Microbiol. 2002;4:193–203.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mcanulla C, Mcdonald IR, Murrell JC. Methyl chloride utilising bacteria are ubiquitous in the natural environment. FEMS Microbiol Lett. 2001;201:151–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keppler F, Harper D, Röckmann T, Moore R, Hamilton J. New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys. 2005;5:2403–11.

    CAS 
    Article 

    Google Scholar
     

  • Nadalig T, Greule M, Bringel F, Keppler F, Vuilleumier S. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation. Front Microbiol. 2014;5:523.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schäfer H, Miller LG, Oremland RS, Murrell JC. Bacterial cycling of methyl halides. Adv Appl Microbiol. 2007;61:307–46.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kröber E, Wende S, Kanukollu S, Buchen-Tschiskale C, Besaury L, Keppler F, Vuilleumier S, Kolb S, Bringel F. 13c-chloromethane incubations provide evidence for novel bacterial chloromethane degraders in a living tree fern. Environ Microbiol. 2021;23(8):4450–65.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Doronina N, Sokolov A, Trotsenko YA. Isolation and initial characterization of aerobic chloromethane-utilizing bacteria. FEMS Microbiol Lett. 1996;142:179–83.

    CAS 
    Article 

    Google Scholar
     

  • Bringel F, Besaury L, Amato P, Kröber E, Kolb S, Keppler F, Vuilleumier S, Nadalig T. Methylotrophs and methylotroph populations for chloromethane degradation. Curr Issues Mol Biol. 2019;33:149–72.

    PubMed 
    Article 

    Google Scholar
     

  • Coulter C, Hamilton JT, Mcroberts WC, Kulakov L, Larkin MJ, Harper DB. Halomethane: bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source. Appl Environ Microbiol. 1999;65:4301–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jaeger N, Besaury L, Kröber E, Delort AM, Greule M, Lenhart K, Nadalig T, Vuilleumier S, Amato P, Kolb S, et al. Chloromethane degradation in soils: a combined microbial and two dimensional stable isotope approach. J Environ Qual. 2018;47:254–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chaignaud P, Maucourt B, Weiman M, Alberti A, Kolb S, Cruveiller S, Vuilleumier S, Bringel F. Genomic and transcriptomic analysis of growth-supporting dehalogenation of chlorinated methanes in Methylobacterium. Front Microbiol. 2017;8:1600.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chaignaud P, Morawe M, Besaury L, Kröber E, Vuilleumier S, Bringel F, Kolb S. Methanol consumption drives the bacterial chloromethane sink in a forest soil. ISME J. 2018;12:2681–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Borodina E, Cox MJ, Mcdonald IR, Murrell JC. Use of DNA-stable isotope probing and functional gene probes to investigate the diversity of methyl chloride-utilizing bacteria in soil. Environ Microbiol. 2005;7:1318–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ul Haque MF, Besaury L, Nadalig T, Bringel F, Mutterer J, Schaller H, Vuilleumier S. Correlated production and consumption of chloromethane in the Arabidopsis Thaliana phyllosphere. Sci Rep. 2017;7:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Kröber E, Eyice Ö. Profiling of active microorganisms by stable isotope probing metagenomics. In: Stable isotope probing. Springer; 2019: 151–161.

  • Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC. DNA stable-isotope probing. Nat Protocols. 2007;2:860–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ulrich A, Becker R. Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol. 2006;56:430–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rc E. Search and clustering orders of magnitude faster than blast. Bioinformatics. 2010;26:2460–1.

    Article 
    CAS 

    Google Scholar
     

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. Uchime improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16s rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 2011;17:10–2.

    Article 

    Google Scholar
     

  • Joshi N, Fass J. Sickle: a sliding-window, adaptive, quality-based trimming tool for fastq files. 2011.

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. Metaspades: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:1–8.

    Article 
    CAS 

    Google Scholar
     

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M. The rast server: rapid annotations using subsystems technology. BMC Genom. 2008;9:1–15.

    Article 
    CAS 

    Google Scholar
     

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90k prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qi J, Luo H, Hao B. Cvtree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res. 2004;32:W45–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW. Rnammer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prokka ST. Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    Article 
    CAS 

    Google Scholar
     

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C. High-specificity targeted functional profiling in microbial communities with shortbred. PLoS Comput Biol. 2015;11:E1004557.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ja B, Bj W, Gw T. Graftm: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:E59–E59.

    Article 
    CAS 

    Google Scholar
     

  • Bushnell B. Bbmap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab.(Lbnl), Berkeley, Ca (United States); 2014.

  • Ar Q, Im H. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    Article 
    CAS 

    Google Scholar
     

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. Blast+: architecture and applications. BMC Bioinform. 2009;10:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Roselli S, Nadalig T, Vuilleumier S, Bringel F. The 380 Kb Pcmu01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12-and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium Extorquens Cm4: a proteomic and bioinformatics study. PLoS ONE. 2013;8:E56598.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mcdonald DPKIR, Wood AP. The Family Methylobacteriaceae. 2014.

  • Me L. Aerobic methylotrophic prokaryotes. The Prokaryotes. 2006;2:618–34.


    Google Scholar
     

  • Marin I, Arahal DR. The family Beijerinckiaceae. The Prokaryotes. 2014;115:33.


    Google Scholar
     

  • Rawat SR, Männistö MK, Starovoytov V, Goodwin L, Nolan M, Hauser LJ, Land M, Davenport KW, Woyke T, Häggblom MM. Complete genome sequence of Granulicella Mallensis type strain Mp5actx8 T, an acidobacterium from tundra soil. Stand Genom Sci. 2013;9:71–82.

    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)