• Dadson K, Hauck L, Billia F. Molecular mechanisms in cardiomyopathy. Clin Sci. 2017;131(13):1375–92.

    CAS 
    Article 

    Google Scholar
     

  • Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ. Classification of the cardiomyopathies: a position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29(2):270–6.

    PubMed 
    Article 

    Google Scholar
     

  • McKenna WJ, Maron BJ, Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circ Res. 2017;121(7):722–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, De Ferranti S, Després J-P, Fullerton HJ, Howard VJ. Executive summary: heart disease and stroke statistics—2015 update: a report from the American heart association. Circulation. 2015;131(4):434–41.

    Article 

    Google Scholar
     

  • Bozkurt B, Colvin M, Cook J, Cooper L, Deswal A, Fonarow G, Francis G, Lenihan D, Lewis E, McNamara D. American heart association committee on heart failure and transplantation of the council on clinical cardiology; council on cardiovascular disease in the young; council on cardiovascular and stroke nursing; council on epidemiology and prevention; and council on quality of care and outcomes research. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American heart association. Circulation. 2016;134(23):e579-646.

    PubMed 

    Google Scholar
     

  • Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rapezzi C, Arbustini E, Caforio AL, Charron P, Gimeno-Blanes J, Heliö T, Linhart A, Mogensen J, Pinto Y, Ristic A. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2013;34(19):1448–58.

    PubMed 
    Article 

    Google Scholar
     

  • Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, Fu M, Heliö T, Heymans S, Jahns R. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2013;34(33):2636–48.

    PubMed 
    Article 

    Google Scholar
     

  • Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Böhm M, Duboc D, Gimeno J, De Groote P, Imazio M. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850–8.

    PubMed 
    Article 

    Google Scholar
     

  • Dal Ferro M, Severini GM, Gigli M, Mestroni L, Sinagra G. Genetics of dilated cardiomyopathy: Current knowledge and future perspectives. In: Sinagra G, Merlo M, Pinamonti B, editors. Dilated Cardiomyopathy: From genetics to clinical management. Cham: Springer International Publishing; 2019. p. 45–69.

    Chapter 

    Google Scholar
     

  • McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121(7):731–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45(7):969–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sweet ME, Taylor MR, Mestroni L. Diagnosis, prevalence, and screening of familial dilated cardiomyopathy. Expert Opin Orphan Drugs. 2015;3(8):869–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harakalova M, Kummeling G, Sammani A, Linschoten M, Baas AF, van der Smagt J, Doevendans PA, van Tintelen JP, Dooijes D, Mokry M. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific genes. Eur J Heart Fail. 2015;17(5):484–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pantou MP, Gourzi P, Gkouziouta A, Tsiapras D, Zygouri C, Constantoulakis P, Adamopoulos S, Degiannis D. Phenotypic heterogeneity within members of a family carrying the same RBM20 mutation R634W. Cardiology. 2018;141(3):150–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, Vertino-Bell A, Smaoui N, Neidich J, Monaghan KG. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696–704.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malakootian M, Jalilian M, Kalayinia S, Hosseini Moghadam M, Heidarali M, Haghjoo M. Whole-exome sequencing reveals a rare missense variant in DTNA in an Iranian pedigree with early-onset atrial fibrillation. BMC Cardiovasc Disord. 2022;22(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Mahdavi M, Mohsen-Pour N, Maleki M, Hesami M, Naderi N, Houshmand G, Jazi HRR, Shahzadi H, Kalayinia S: Whole-exome sequencing identified compound heterozygous variants in the TTN gene causing Salih myopathy with dilated cardiomyopathy in an Iranian family. Cardiology in the Young 2021:1–6.

  • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Garrison E, Marth G: Haplotype-based variant detection from short-read sequencing. 2012 http://arxiv.org/abs/1207.3907

  • Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Müller S, Kayvanpour E, Vogel B. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36(18):1123–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hershberger RE, Parks SB, Kushner JD, Li D, Ludwigsen S, Jakobs P, Nauman D, Burgess D, Partain J, Litt M. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin Transl Sci. 2008;1(1):21–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341(23):1715–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schönberger J, Wang L, Shin JT, Do Kim S, Depreux FF, Zhu H, Zon L, Pizard A, Kim JB, MacRae CA. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet. 2005;37(4):418–22.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zahr HC, Jaalouk DE. Exploring the crosstalk between LMNA and splicing machinery gene mutations in dilated cardiomyopathy. Front Genet. 2018;9:231.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, Maatz H, Schulz H, Li S, Parrish AM. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18(5):766–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mirtschink P, Krishnan J, Grimm F, Sarre A, Hörl M, Kayikci M, Fankhauser N, Christinat Y, Cortijo C, Feehan O. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature. 2015;522(7557):444–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang J, Hung L-H, Licht T, Kostin S, Looso M, Khrameeva E, Bindereif A, Schneider A, Braun T. RBM24 is a major regulator of muscle-specific alternative splicing. Dev Cell. 2014;31(1):87–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao C, Ren S, Lee J-H, Qiu J, Chapski DJ, Rau CD, Zhou Y, Abdellatif M, Nakano A, Vondriska TM. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. J Clin Investig. 2016;126(1):195–206.

    PubMed 
    Article 

    Google Scholar
     

  • Brauch KM, Karst ML, Herron KJ, de Andrade M, Pellikka PA, Rodeheffer RJ, Michels VV, Olson TM. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009;54(10):930–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watanabe T, Kimura A, Kuroyanagi H. Alternative Splicing Regulator RBM20 and Cardiomyopathy. Front Mol Biosci. 2018;5:105.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, Bennett R, Bhai J, Billis K, Boddu S. Ensembl 2019. Nucleic Acids Res. 2019;47(D1):D745–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murayama R, Kimura-Asami M, Togo-Ohno M, Yamasaki-Kato Y, Naruse TK, Yamamoto T, Hayashi T, Ai T, Spoonamore KG, Kovacs RJ. Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-Binding Motif Protein 20 (RBM20) through nuclear localization. Sci Rep. 2018;8(1):1–14.


    Google Scholar
     

  • Filippello A, Lorenzi P, Bergamo E, Romanelli MG. Identification of nuclear retention domains in the RBM20 protein. FEBS Lett. 2013;587(18):2989–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maatz H, Jens M, Liss M, Schafer S, Heinig M, Kirchner M, Adami E, Rintisch C, Dauksaite V, Radke MH. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J Clin Investig. 2014;124(8):3419–30.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaertner A, Klauke B, Felski E, Kassner A, Brodehl A, Gerdes D, Stanasiuk C, Ebbinghaus H, Schulz U, Dubowy KO. Cardiomyopathy-associated mutations in the RS domain affect nuclear localization of RBM20. Hum Mutat. 2020;41(11):1931–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Franaszczyk M, Chmielewski P, Truszkowska G, Stawinski P, Michalak E, Rydzanicz M, Sobieszczanska-Malek M, Pollak A, Szczygieł J, Kosinska J. Titin truncating variants in dilated cardiomyopathy–prevalence and genotype-phenotype correlations. PLoS ONE. 2017;12(1): e0169007.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li D, Morales A, Gonzalez-Quintana J, Norton N, Siegfried JD, Hofmeyer M, Hershberger RE. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci. 2010;3(3):90–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Refaat MM, Lubitz SA, Makino S, Islam Z, Frangiskakis JM, Mehdi H, Gutmann R, Zhang ML, Bloom HL, MacRae CA. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 2012;9(3):390–6.

    PubMed 
    Article 

    Google Scholar
     

  • Chami N, Tadros R, Lemarbre F, Lo KS, Beaudoin M, Robb L, Labuda D, Tardif J-C, Racine N, Talajic M. Nonsense mutations in BAG3 are associated with early-onset dilated cardiomyopathy in French Canadians. Can J Cardiol. 2014;30(12):1655–61.

    PubMed 
    Article 

    Google Scholar
     

  • Millat G, Bouvagnet P, Chevalier P, Sebbag L, Dulac A, Dauphin C, Jouk P-S, Delrue M-A, Thambo J-B, Le Metayer P. Clinical and mutational spectrum in a cohort of 105 unrelated patients with dilated cardiomyopathy. Eur J Med Genet. 2011;54(6):e570–5.

    PubMed 
    Article 

    Google Scholar
     

  • Wells QS, Becker JR, Su YR, Mosley JD, Weeke P, D’Aoust L, Ausborn NL, Ramirez AH, Pfotenhauer JP, Naftilan AJ. Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet. 2013;6(4):317–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akinrinade O, Ollila L, Vattulainen S, Tallila J, Gentile M, Salmenperä P, Koillinen H, Kaartinen M, Nieminen MS, Myllykangas S. Genetics and genotype–phenotype correlations in finnish patients with dilated cardiomyopathy. Eur Heart J. 2015;36(34):2327–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • García-Molina E, Sabater-Molina M, López-Cuenca D, Olmo MC, Pérez I, Esparza CM, Blanes JRG. A study of the pathogenicity of variants in familial heart disease. The value of cosegregation. Am J Transl Res. 2019;11(3):1724.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hey TM, Rasmussen TB, Madsen T, Aagaard MM, Harbo M, Mølgaard H, Møller JE, Eiskjær H, Mogensen J. Pathogenic RBM20-variants are associated with a severe disease expression in male patients with dilated cardiomyopathy. Circ Heart Fail. 2019;12(3):e005700.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hey TM, Rasmussen TB, Madsen T, Aagaard MM, Harbo M, Mølgaard H, Nielsen SK, Haas J, Meder B, Møller JE. Clinical and genetic investigations of 109 index patients with dilated cardiomyopathy and 445 of their relatives. Circ Heart Fail. 2020;13(10):e006701.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nguyen TV, Vu MTT, Do TNP, Tran THN, Do TH, Nguyen TMH, Huynh BNT, Le LA, Pham NTN, Nguyen TDA. Genetic determinants and genotype-phenotype correlations in Vietnamese patients with dilated cardiomyopathy. Circ J. 2021. https://doi.org/10.1253/circj.CJ-21-0077.

    Article 
    PubMed 

    Google Scholar
     

  • Streckfuss-Bömeke K, Tiburcy M, Fomin A, Luo X, Li W, Fischer C, Özcelik C, Perrot A, Sossalla S, Haas J. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2017;113:9–21.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sun Q, Guo J, Hao C, Guo R, Hu X, Chen Y, Yang W, Li W, Feng Y. Whole-exome sequencing reveals two de novo variants in the RBM20 gene in two Chinese patients with left ventricular non-compaction cardiomyopathy. Pediatric Investig. 2020;4(1):11–6.

    CAS 
    Article 

    Google Scholar
     

  • Beraldi R, Li X, Martinez Fernandez A, Reyes S, Secreto F, Terzic A, Olson TM, Nelson TJ. Rbm20-deficient cardiogenesis reveals early disruption of RNA processing and sarcomere remodeling establishing a developmental etiology for dilated cardiomyopathy. Hum Mol Genet. 2014;23(14):3779–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parikh VN, Caleshu C, Reuter C, Lazzeroni LC, Ingles J, Garcia J, McCaleb K, Adesiyun T, Sedaghat-Hamedani F, Kumar S. Regional variation in RBM20 causes a highly penetrant arrhythmogenic cardiomyopathy. Circ Heart Fail. 2019;12(3):e005371.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rampersaud E, Siegfried JD, Norton N, Li D, Martin E, Hershberger RE. Rare variant mutations identified in pediatric patients with dilated cardiomyopathy. Prog Pediatr Cardiol. 2011;31(1):39–47.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liatakis I, Prappa E, Gouziouta A, Pantou MP, Gourzi P, Vlachos K, Mililis P, Kariki O, Degiannis D, Efremidis M. RBM20 mutation and ventricular arrhythmias in a young patient with dilated cardiomyopathy: a case report. Am J Cardiovasc Dis. 2021;11(3):398.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen SN, Mestroni L, Taylor MR. Genetics of dilated cardiomyopathy. Curr Opin Cardiol. 2021;36(3):288–94.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Favalli V, Serio A, Grasso M, Arbustini E. Genetic causes of dilated cardiomyopathy. Heart. 2016;102(24):2004–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Asadi M, Foo R, Salehi AR, Salehi R, Samienasab MR. Mutation in δ-Sg gene in familial dilated cardiomyopathy. Adv Biomed Res. 2017;6:32.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yousefi HA, Asghari Moghaddam N, Jafari Fesharaki M. Association between the rs538089 of the LMNA gene and dilated cardiomyopathy in Iranian patients. Iran Heart J. 2020;21(4):103–10.


    Google Scholar
     

  • Nozari A, Aghaei-Moghadam E, Zeinaloo A, Mollazadeh R, Majnoon M-T, Alavi A, Firouzabadi SG, Mohammadzadeh A, Banihashemi S, Nikzaban M. A novel splicing variant in FLNC gene responsible for a highly penetrant familial dilated cardiomyopathy in an extended Iranian family. Gene. 2018;659:160–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eshaghkhani Y, Mohamadifar A, Asadollahi M, Taghizadeh M, Karamzade A, Saberi M, Nourmohammadi P, Golchehre Z, Amin A, Keramatipour M. Whole-exome sequencing identified a novel variant (C. 405_422+ 39del) in DSP gene in an Iranian pedigree with familial dilated cardiomyopathy. Rep Biochem Mol Biol. 2021;10(2):280.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petropoulou E, Soltani M, Firoozabadi AD, Namayandeh SM, Crockford J, Maroofian R, Jamshidi Y. Digenic inheritance of mutations in the cardiac troponin (TNNT2) and cardiac beta myosin heavy chain (MYH7) as the cause of severe dilated cardiomyopathy. Eur J Med Genet. 2017;60(9):485–8.

    PubMed 
    Article 

    Google Scholar
     

  • Mollanoori H, Naderi N, Amin A, Hassani B, Shahraki H, Teimourian S. A novel human T17N-phospholamban variation in idiopathic dilated cardiomyopathy. Gene Rep. 2018;12:122–7.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)