• Pittet V, Burnand B, Yersin B, Carron PN. Trends of pre-hospital emergency medical services activity over 10 years: a population-based registry analysis. BMC Health Serv Res. 2014;14:380.

    Article 

    Google Scholar
     

  • Rawshani A, Larsson A, Gelang C, Lindqvist J, Gellerstedt M, Bang A, et al. Characteristics and outcome among patients who dial for the EMS due to chest pain. Int J Cardiol. 2014;176(3):859–65.

    Article 

    Google Scholar
     

  • Feldman MJ, Verbeek PR, Lyons DG, Chad SJ, Craig AM, Schwartz B. Comparison of the medical priority dispatch system to an out-of-hospital patient acuity score. Acad Emerg Med. 2006;13(9):954–60.

    Article 

    Google Scholar
     

  • Thang ND, Karlson BW, Bergman B, Santos M, Karlsson T, Bengtson A, et al. Characteristics of and outcome for patients with chest pain in relation to transport by the emergency medical services in a 20-year perspective. Am J Emerg Med. 2012;30(9):1788–95.

    Article 

    Google Scholar
     

  • Gellerstedt M, Rawshani N, Herlitz J, Bång A, Gelang C, Andersson JO, et al. Could prioritisation by emergency medicine dispatchers be improved by using computer-based decision support? A cohort of patients with chest pain. Int J Cardiol. 2016;220:734–8.

    Article 

    Google Scholar
     

  • Schehadat MS, Scherer G, Groneberg DA, Kaps M, Bendels MHK. Outpatient care in acute and prehospital emergency medicine by emergency medical and patient transport service over a 10-year period: a retrospective study based on dispatch data from a German emergency medical dispatch centre (OFF-RESCUE). BMC Emerg Med. 2021;21(1):29.

    Article 

    Google Scholar
     

  • Lowthian JA, Cameron PA, Stoelwinder JU, Curtis A, Currell A, Cooke MW, et al. Increasing utilisation of emergency ambulances. Aust Health Rev. 2011;35(1):63–9.

    Article 

    Google Scholar
     

  • Blohm M, Hartford M, Karlson BW, Karlsson T, Herlitz J. A media campaign aiming at reducing delay times and increasing the use of ambulance in AMI. Am J Emerg Med. 1994;12(3):315–8.

    CAS 
    Article 

    Google Scholar
     

  • Nehme Z, Cameron PA, Akram M, Patsamanis H, Bray JE, Meredith IT, et al. Effect of a mass media campaign on ambulance use for chest pain. Med J Aust. 2017;206(1):30–5.

    Article 

    Google Scholar
     

  • Thuresson M, Haglund P, Ryttberg B, Herlitz J, Nilsson U. Impact of an information campaign on delays and ambulance use in acute coronary syndrome. Am J Emerg Med. 2015;33(2):297–8.

    Article 

    Google Scholar
     

  • Cartledge S, Finn J, Straney L, Ngu P, Stub D, Patsamanis H, et al. The barriers associated with emergency medical service use for acute coronary syndrome: the awareness and influence of an Australian public mass media campaign. Emerg Med J. 2017;34(7):466–71.

    Article 

    Google Scholar
     

  • Govindarajan A, Schull M. Effect of socioeconomic status on out-of-hospital transport delays of patients with chest pain. Ann Emerg Med. 2003;41(4):481–90.

    Article 

    Google Scholar
     

  • Hsia RY, Huang D, Mann NC, Colwell C, Mercer MP, Dai M, et al. A US National Study of the association between income and ambulance response time in cardiac arrest. JAMA Netw Open. 2018;1(7): e185202.

    Article 

    Google Scholar
     

  • Sepehrvand N, Alemayehu W, Kaul P, Pelletier R, Bello AK, Welsh RC, et al. Ambulance use, distance and outcomes in patients with suspected cardiovascular disease: a registry-based geographic information system study. Eur Heart J Acute Cardiovasc Care. 2020;9(1_suppl):45–58.

  • Aitavaara-Anttila M, Liisanantti J, Ehrola A, Spalding M, Ala-Kokko T, Raatiniemi L. Use of prehospital emergency medical services according to income of residential area. Emerg Med J. 2020;37(7):429–33.

    Article 

    Google Scholar
     

  • Søvsø MB, Bech BH, Christensen HC, Huibers L, Christensen EF, Christensen MB. Sociodemographic characteristics associated with contacts to emergency medical services and out-of-hours primary care: an observational study of 2.3 million citizens. Clin Epidemiol. 2020;12:393–401.

  • Magnusson C, Zelano J. High-resolution mapping of epilepsy prevalence, ambulance use, and socioeconomic deprivation in an urban area of Sweden. Epilepsia. 2019;60(10):2060–7.

    Article 

    Google Scholar
     

  • Pines JM, Pollack CV, Diercks DB, Chang AM, Shofer FS, Hollander JE. The association between emergency department crowding and adverse cardiovascular outcomes in patients with chest pain. Acad Emerg Med. 2009;16(7):617–25.

    Article 

    Google Scholar
     

  • Carter EJ, Pouch SM, Larson EL. The relationship between emergency department crowding and patient outcomes: a systematic review. J Nurs Scholarsh. 2014;46(2):106–15.

    Article 

    Google Scholar
     

  • Diercks DB, Roe MT, Chen AY, Peacock WF, Kirk JD, Pollack CV, et al. Prolonged emergency department stays of non-ST-segment-elevation myocardial infarction patients are associated with worse adherence to the American College of Cardiology/American Heart Association guidelines for management and increased adverse events. Ann Emerg Med. 2007;50(5):489–96.

    Article 

    Google Scholar
     

  • Holmén J, Herlitz J, Ricksten SE, Strömsöe A, Hagberg E, Axelsson C, et al. Shortening ambulance response time increases survival in out-of-hospital cardiac arrest. J Am Heart Assoc. 2020;9(21): e017048.

    Article 

    Google Scholar
     

  • Wibring K, Lingman M, Herlitz J, Amin S, Bång A. Prehospital stratification in acute chest pain patient into high risk and low risk by emergency medical service: a prospective cohort study. BMJ Open. 2021;11(4): e044938.

    Article 

    Google Scholar
     

  • Wibring K, Lingman M, Herlitz J, Ashfaq A, Bång A. Development of a prehospital prediction model for risk stratification of patients with chest pain. Am J Emerg Med. 2021;51:26–31.

    Article 

    Google Scholar
     

  • Ek B, Svedlund M. Registered nurses’ experiences of their decision-making at an Emergency Medical Dispatch Centre. J Clin Nurs. 2015;24(7–8):1122–31.

    Article 

    Google Scholar
     

  • Sporer KA, Johnson NJ. Detailed analysis of prehospital interventions in medical priority dispatch system determinants. West J Emerg Med. 2011;12(1):19–29.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clawson J, Olola C, Heward A, Patterson B, Scott G. The Medical Priority Dispatch System’s ability to predict cardiac arrest outcomes and high acuity pre-hospital alerts in chest pain patients presenting to 9-9-9. Resuscitation. 2008;78(3):298–306.

    Article 

    Google Scholar
     

  • Torlén K, Kurland L, Castrén M, Olanders K, Bohm K. A comparison of two emergency medical dispatch protocols with respect to accuracy. Scand J Trauma Resusc Emerg Med. 2017;25(1):122.

    Article 

    Google Scholar
     

  • Magnusson C, Herlitz J, Axelsson C. Patient characteristics, triage utilisation, level of care, and outcomes in an unselected adult patient population seen by the emergency medical services: a prospective observational study. BMC Emerg Med. 2020;20(1):7.

    Article 

    Google Scholar
     

  • Stekhoven DJ, Buhlmann P. MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.

    CAS 
    Article 

    Google Scholar
     

  • Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Am J Epidemiol. 2014;179(6):764–74.

    Article 

    Google Scholar
     

  • Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338: b605.

    Article 

    Google Scholar
     

  • Shapiro DE. The interpretation of diagnostic tests. Stat Methods Med Res. 1999;8(2):113–34.

    CAS 
    Article 

    Google Scholar
     

  • Gellerstedt M, Bang A, Herlitz J. Could a computer-based system including a prevalence function support emergency medical systems and improve the allocation of life support level? Eur J Emerg Med. 2006;13(5):290–4.

    Article 

    Google Scholar
     

  • Rawshani N, Rawshani A, Gelang C, Herlitz J, Bang A, Andersson JO, et al. Could ten questions asked by the dispatch center predict the outcome for patients with chest discomfort? Int J Cardiol. 2016;209:223–5.

    Article 

    Google Scholar
     

  • Pope JH, Aufderheide TP, Ruthazer R, Woolard RH, Feldman JA, Beshansky JR, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342(16):1163–70.

    CAS 
    Article 

    Google Scholar
     

  • Than M, Herbert M, Flaws D, Cullen L, Hess E, Hollander JE, et al. What is an acceptable risk of major adverse cardiac event in chest pain patients soon after discharge from the Emergency Department? A clinical survey. Int J Cardiol. 2013;166(3):752–4.

    Article 

    Google Scholar
     

  • Alotaibi A, Alghamdi A, Reynard C, Body R. Accuracy of emergency medical services (EMS) telephone triage in identifying acute coronary syndrome (ACS) for patients with chest pain: a systematic literature review. BMJ Open. 2021;11(8): e045815.

    Article 

    Google Scholar
     

  • Wibring K, Herlitz J, Lingman M, Bång A. Symptom description in patients with chest pain: a qualitative analysis of emergency medical calls involving high-risk conditions. J Clin Nurs. 2019.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)