• Jiang W, King TZ, Turner JA. Imaging genetics towards a refined diagnosis of schizophrenia. Front Psych. 2019;10:494.

    Article 

    Google Scholar
     

  • Rössler W, Salize HJ, van Os J, Riecher-Rössler A. Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol. 2005;15(4):399–409.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE, et al. Schizophrenia: manifestations, incidence and course in different cultures A World Health Organization Ten-Country Study. Psychol Med Monogr Suppl. 2009;20:1–97.

    Article 

    Google Scholar
     

  • Keshavan MS, Nasrallah HA, Tandon R. Schizophrenia, “Just the Facts” 6. Moving ahead with the schizophrenia concept: from the elephant to the mouse. Schizophr Res. 2011;127(1-3):3–13.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bearden CE, Meyer SE, Loewy RL, Niendam TA, Cannon TD. The neurodevelopmental model of schizophrenia: updated. In: Developmental Psychopathology; 2015. p. 542–69.


    Google Scholar
     

  • Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed). 1987;295(6600):681–2.

    CAS 
    Article 

    Google Scholar
     

  • Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44(7):660–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rapoport JL, Addington AM, Frangou S, Psych MRC. The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry. 2005;10(5):434–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cannon TD, van Erp TGM, Rosso IM, Huttunen M, Lönnqvist J, Pirkola T, et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry. 2002;59(1):35–41.

    PubMed 
    Article 

    Google Scholar
     

  • Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry. 2015;77(1):52–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hwang H, Szucs MJ, Ding LJ, Allen A, Haensgen H, Gao F, et al. A schizophrenia risk gene, NRGN, bidirectionally modulates synaptic plasticity via regulating the neuronal phosphoproteome. bioRxiv. 2018:481291.

  • Tomoda T, Hikida T, Sakurai T. Role of DISC1 in neuronal trafficking and its implication in neuropsychiatric manifestation and neurotherapeutics. Neurotherapeutics. 2017;14(3):623–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45(10):1150.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article 
    CAS 

    Google Scholar
     

  • Lam M, Chen C-Y, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet. 2019;51(12):1670–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ji Y, Zhang X, Wang Z, Qin W, Liu H, Xue K, et al. Genes associated with gray matter volume alterations in schizophrenia. NeuroImage. 2021;225:117526.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93(5):779–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med. 2016;22(6):649–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Li S, Li X, Yang Y, Li W, Xiao X, et al. Convergent lines of evidence support NOTCH4 as a schizophrenia risk gene. J Med Genet. 2020.

  • Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19(11):1442–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gamazon ER, Zwinderman AH, Cox NJ, Denys D, Derks EM. Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nat Genet. 2019;51(6):933–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li M, Huang L, Grigoroiu-Serbanescu M, Bergen SE, Landén M, Hultman CM, et al. Convergent lines of evidence support LRP8 as a susceptibility gene for psychosis. Mol Neurobiol. 2016;53(10):6608–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramos J, Fu D. The emerging impact of tRNA modifications in the brain and nervous system. Biochim Biophys Acta (BBA)-Gene Regul Mech. 2019;1862(3):412–28.

    CAS 
    Article 

    Google Scholar
     

  • Schaffer AE, Pinkard O, Coller JM. tRNA metabolism and neurodevelopmental disorders. Annu Rev Genomics Hum Genet. 2019;20:359–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, et al. A role for noncoding variation in schizophrenia. Cell Rep. 2014;9(4):1417–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dai R, Chen L, Liu S, Chen Y, Jiang Y, Dai J, et al. Cell group analysis reveals changes in upper-layer neurons associated with schizophrenia. bioRxiv. 2020:2020.2010.2022.351213.

  • Park CY, Zhou J, Wong AK, Chen KM, Theesfeld CL, Darnell RB, et al. Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk. Nat Genet. 2021;53(2):166–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rodriguez-López J, Arrojo M, Paz E, Páramo M, Costas J. Identification of relevant hub genes for early intervention at gene coexpression modules with altered predicted expression in schizophrenia. Progress Neuro-Psychopharmacol Biol Psychiatry. 2020;98:109815.

    Article 
    CAS 

    Google Scholar
     

  • Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50(5):668–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dunn EC, Sofer T, Gallo LC, Gogarten SM, Kerr KF, Chen C-Y, et al. Genome-wide association study of generalized anxiety symptoms in the Hispanic Community Health Study/Study of Latinos. Am J Med Genet Part B, Neuropsychiatr Genet. 2017;174(2):132–43.

    Article 

    Google Scholar
     

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hadar R, Winter R, Edemann-Callesen H, Wieske F, Habelt B, Khadka N, et al. Prevention of schizophrenia deficits via non-invasive adolescent frontal cortex stimulation in rats. Mol Psychiatry. 2020;25(4):896–905.

    PubMed 
    Article 

    Google Scholar
     

  • Consortium GT. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204.

    Article 

    Google Scholar
     

  • He X, Fuller CK, Song Y, Meng Q, Zhang B, Yang X, et al. Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am J Hum Genet. 2013;92(5):667–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat Genet. 2021;53(2):143–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park G-H, Noh H, Shao Z, Ni P, Qin Y, Liu D, et al. Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia. Nat Neurosci. 2020;23(11):1352–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89(1):37–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478(7370):483–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li M, Santpere G, Kawasawa YI, Evgrafov OV, Gulden FO, Pochareddy S, et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science. 2018;362(6420).

  • Collado-Torres L, Burke EE, Peterson A, Shin J, Straub RE, Rajpurohit A, et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron. 2019;103(2):203–216. e208.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28(10):1353–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011;9(2):179–81.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li M, Das T, Deng W, Wang Q, Li Y, Zhao L, et al. Clinical utility of a short resting-state MRI scan in differentiating bipolar from unipolar depression. Acta Psychiatr Scand. 2017;136(3):288–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ohnishi T, Hashimoto R, Mori T, Nemoto K, Moriguchi Y, Iida H, et al. The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain. 2006;129(2):399–410.

    PubMed 
    Article 

    Google Scholar
     

  • Yang C-P, Li X, Wu Y, Shen Q, Zeng Y, Xiong Q, et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat Commun. 2018;9(1):838.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wu Y, Bi R, Zeng C, Ma C, Sun C, Li J, et al. Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine. 2019;44:530–41.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smeland OB, Wang Y, Frei O, Li W, Hibar DP, Franke B, et al. Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull. 2017;44(4):854–64.

    PubMed Central 
    Article 

    Google Scholar
     

  • Radonjić NV, Hess JL, Rovira P, Andreassen O, Buitelaar JK, Ching CRK, et al. Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Mol Psychiatry. 2021.

  • Liu N, Xiao Y, Zhang W, Tang B, Zeng J, Hu N, et al. Characteristics of gray matter alterations in never-treated and treated chronic schizophrenia patients. Transl Psychiatry. 2020;10(1):136.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Lei D, Keedy SK, Ivleva EI, Eum S, Yao L, et al. Brain gray matter network organization in psychotic disorders. Neuropsychopharmacology. 2020;45(4):666–74.

    PubMed 
    Article 

    Google Scholar
     

  • Joehanes R, Zhang X, Huan T, Yao C, Ying S-x, Nguyen QT, et al. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biol. 2017;18(1):16.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kato M, Araiso Y, Noma A, Nagao A, Suzuki T, Ishitani R, et al. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Nucleic Acids Res. 2011;39(4):1576–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ikeda M, Takahashi A, Kamatani Y, Momozawa Y, Saito T, Kondo K, et al. Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations/diseases genetic effect. Schizophr Bull. 2019;45(4):824–34.

    PubMed 
    Article 

    Google Scholar
     

  • Goes FS, McGrath J, Avramopoulos D, Wolyniec P, Pirooznia M, Ruczinski I, et al. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am J Med Genet Part B, Neuropsychiatr Genet. 2015;168(8):649–59.

    CAS 
    Article 

    Google Scholar
     

  • Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50(3):381–9.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Periyasamy S, John S, Padmavati R, Rajendren P, Thirunavukkarasu P, Gratten J, et al. Association of schizophrenia risk with disordered niacin metabolism in an Indian genome-wide association study. JAMA Psychiat. 2019;76(10):1026–34.

    Article 

    Google Scholar
     

  • Ochoa D, Hercules A, Carmona M, Suveges D, Gonzalez-Uriarte A, Malangone C, et al. Open targets platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 2020;49(D1):D1302–10.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, Heilbronner U, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study. JAMA Psychiat. 2018;75(1):65–74.


    Google Scholar
     

  • Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24. 32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:1–17.

  • Smeland OB, Bahrami S, Frei O, Shadrin A, O’Connell K, Savage J, et al. Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry. 2020;25(4):844–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol. 2018;8(9):180138.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Raabe FJ, Galinski S, Papiol S, Falkai PG, Schmitt A, Rossner MJ. Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophr. 2018;4(1):23.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A. 2002;99(26):16899–903.

    PubMed 
    Article 

    Google Scholar
     

  • Key J, Sen NE, Arsovic A, Krämer S, Hülse R, Gispert-Sanchez S, et al. Iron depletion reduces Abce1 transcripts while inducing the mitophagy factors Pink1 and Parkin; 2019.

    Book 

    Google Scholar
     

  • Tarasov VV, Svistunov AA, Chubarev VN, Sologova SS, Mukhortova P, Levushkin D, et al. Alterations of astrocytes in the context of schizophrenic dementia. Front Pharmacol. 2020;10:1612.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry. 2020;7(3):272–81.

    PubMed 
    Article 

    Google Scholar
     

  • Lewis DA: The chandelier neuron in schizophrenia. (1932-846X (Electronic)).

  • Murray RM, Bhavsar V, Tripoli G, Howes O. 30 years on: how the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophr Bull. 2017;43(6):1190–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18(12):727–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Townsley KG, Brennand KJ, Huckins LM. Massively parallel techniques for cataloguing the regulome of the human brain. Nat Neurosci. 2020;23(12):1509–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50(4):538–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Noh H, Shao Z, Coyle JT, Chung S. Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). Biochim Biophys Acta Mol Basis Dis. 2017;1863(9):2382–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24(4):549–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Obi-Nagata K, Temma Y, Hayashi-Takagi A. Synaptic functions and their disruption in schizophrenia: from clinical evidence to synaptic optogenetics in an animal model. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(5):179–97.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005;10(1):40–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain. 2014;137(Pt 8):2382–95.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dong Z, Ma Y, Zhou H, Shi L, Ye G, Yang L, et al. Integrated genomics analysis highlights important SNPs and genes implicated in moderate-to-severe asthma based on GWAS and eQTL datasets. BMC Pulm Med. 2020;20(1):270.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li H, Chang H, Song X, Liu W, Li L, Wang L, et al. Integrative analyses of major histocompatibility complex loci in the genome-wide association studies of major depressive disorder. Neuropsychopharmacology. 2019;44(9):1552–61.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry. 2018;8(1):30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith LM, Parr-Brownlie LC, Duncan EJ, Black MA, Gemmell NJ, Dearden PK, et al. Striatal mRNA expression patterns underlying peak dose l-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat. Neuroscience. 2016;324:238–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raju VB, Shukla A, Jacob A, Bharath RD, Kumar VKG, Varambally S, et al. The frontal pole and cognitive insight in schizophrenia. Psychiatry Res: Neuroimaging. 2021;308:111236.

    PubMed 
    Article 

    Google Scholar
     

  • Birnbaum R, Jaffe AE, Chen Q, Hyde TM, Kleinman JE, Weinberger DR. Investigation of the prenatal expression patterns of 108 schizophrenia-associated genetic loci. Biol Psychiatry. 2015;77(11):e43–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li T, Wang Q, Zhang J, Rolls ET, Yang W, Palaniyappan L, et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr Bull. 2016;43(2):436–48.

    PubMed Central 

    Google Scholar
     

  • Sumiyoshi T, Nishida K, Niimura H, Toyomaki A, Morimoto T, Tani M, et al. Cognitive insight and functional outcome in schizophrenia; a multi-center collaborative study with the specific level of functioning scale–Japanese version. Schizophrenia Res: Cogn. 2016;6:9–14.


    Google Scholar
     

  • Karam CS, Ballon JS, Bivens NM, Freyberg Z, Girgis RR, Lizardi-Ortiz JE, et al. Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol Sci. 2010;31(8):381–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oh S, Shin S, Janknecht R. The small members of the JMJD protein family: Enzymatic jewels or jinxes? Biochimica et Biophysica Acta (BBA)-Reviews on. Cancer. 2019;1871(2):406–18.

    CAS 

    Google Scholar
     

  • Lobo J, Henrique R, Jerónimo C. The role of DNA/histone modifying enzymes and chromatin remodeling complexes in testicular germ cell tumors. Cancers. 2019;11(1):6.

    CAS 
    Article 

    Google Scholar
     

  • Ploumakis A, Coleman ML. OH, the places you’ll go! hydroxylation, gene expression, and cancer. Mol Cell. 2015;58(5):729–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang C-K, Hayes RD, Broadbent MTM, Hotopf M, Davies E, Møller H, et al. A cohort study on mental disorders, stage of cancer at diagnosis and subsequent survival. BMJ Open. 2014;4(1).

  • Shi J, Wu L, Zheng W, Wen W, Wang S, Shu X, et al. Genetic evidence for the association between schizophrenia and breast cancer. J Psychiatry Brain Sci. 2018;3(4).

  • Byrne EM, Ferreira MAR, Xue A, Lindström S, Jiang X, Yang J, et al. Is schizophrenia a risk factor for breast cancer?—evidence from genetic data. Schizophr Bull. 2019;45(6):1251–6.

    PubMed 
    Article 

    Google Scholar
     

  • Wingo TS, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci. 2021;24(6):810–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ho B-C, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68(2):128–37.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50(6):825–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)