• Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kriventseva EV, Koch I, Apweiler R, Vingron M, Bork P, Gelfand MS, Sunyaev S. Increase of functional diversity by alternative splicing. Trends Genet. 2003;19(3):124–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weyn-Vanhentenryck SM, Feng H, Ustianenko D, Duffié R, Yan Q, Jacko M, et al. Precise temporal regulation of alternative splicing during neural development. Nat Commun. 2018;9:2189.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5(10):R74.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Noh SJ, Lee K, Paik H, Hur CG. TISA: Tissue-specific Alternative Splicing in Human and Mouse Genes. DNA Res. 2006;13(5):229–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Planells B, Gómez-Redondo I, Pericuesta E, Lonergan P, Gutiérrez-Adán A. Differential isoform expression and alternative splicing in sex determination in mice. BMC Genomics. 2019;20:202.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gibilisco L, Zhou Q, Mahajan S, Bachtrog D. Alternative Splicing within and between Drosophila Species, Sexes, Tissues, and Developmental Stages. PLoS Genet. 2016;12(12):e1006464.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, Robinson GE, et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci U S A. 2012;109(13):4968–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Y, Wang Z. Systematical identification of splicing regulatory cis-elements and cognate trans-factors. Methods. 2014;65(3):350–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Holste D, Ohler U. Strategies for Identifying RNA Splicing Regulatory Motifs and Predicting Alternative Splicing Events. PLoS Comput Biol. 2008;4(1):e21.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kadener S, Fededa JP, Rosbash M, Kornblihtt AR. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci U S A. 2002;99(12):8185–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Esumi S, Kakazu N, Taguchi Y, Hirayama T, Sasaki A, Hirabayashi T, et al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat Genet. 2005;37(2):171–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reyes A, Huber W. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res. 2018;46(2):582–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet. 2013;14(4):288–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee K, Hsiung CCS, Huang P, Raj A, Blobel GA. Dynamic enhancer–gene body contacts during transcription elongation. Genes Dev. 2015;29(20):2217.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet. 2019;20(8):437–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ong CT, Corces VG. CTCF: An Architectural Protein Bridging Genome Topology and Function. Nat Rev Genet. 2014;15(4):234–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buecker C, Wysocka J. Enhancers as information integration hubs in development: lessons from genomics. Trends Genet. 2012;28(6):276–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao T, He B, Liu S, Zhu H, Tan K, Qian J. EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics. 2016;32(23):3543–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leinonen R, Sugawara H. The Sequence Read Archive. Nucleic Acids Res. 2011;39(Suppl 1):D19-21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Podsiadło A, Wrzesień M, Paja W, Rudnicki W, Wilczyński B. Active enhancer positions can be accurately predicted from chromatin marks and collective sequence motif data. BMC Syst Biol. 2013;7(Suppl 6):S16.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Whalen S, Truty RM, Pollard KS. Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet. 2016;48(5):488–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shiau CK, Huang JH, Tsai HK. CATANA: a tool for generating comprehensive annotations of alternative transcript events. Bioinformatics. 2019;35(8):1414–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7(12):1009–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Venables JP, Klinck R, Bramard A, Inkel L, Dufresne-Martin G, Koh C, et al. Identification of alternative splicing markers for breast cancer. Cancer Res. 2008;68(22):9525–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 2012;488:116–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Stein TI, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database. 2017;2017:bax028.

  • Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE. the Mouse Genome Database Group. Mouse Genome Database (MGD) 2019. 2019. Nucleic Acids Res. 2019;47(D1):D801-6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30(7):1006–7.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • UCSC chain file from hg19 (GRCh37) to mm9 (GRCm37). http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/hg19ToMm9.over.chain.gz. Accessed 21 Sep 2020.

  • Manduchi E, Williams SM, Chesi A, Johnson ME, Wells AD, Grant SFA, et al. Leveraging epigenomics and contactomics data to investigate SNP pairs in GWAS. Hum Genet. 2018;137:413–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vilar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, et al. Enhancer evolution across 20 mammalian species. Cell. 2015;160(3):554–66.

    Article 
    CAS 

    Google Scholar
     

  • Flores MA, Ovcharenko I. Enhancer reprogramming in mammalian genomes. BMC Bioinformatics. 2018;19:316.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing Program, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bailey TL. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics. 2011;27(12):1653–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol. 2007;8(2):R24.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fornes O, Castro-Mondragon JA, Khan A, Lee RVD, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87-92.

    CAS 
    PubMed 

    Google Scholar
     

  • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell. 2013;153(2):307–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Transcriptional super-enhancers connected to cell identity and disease. Cell. 2013;155(4): https://doi.org/10.1016/j.cell.2013.09.053.

  • Moorthy SD, Davidson S, Shchuka VM, Singh G, Malek-Gilani N, Langroudi L, et al. Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Res. 2017;27(2):246–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khan A, Zhang X. dbSUPER: a database of super-enhancers in mouse and human genome. Nucleic Acids Res. 2016;44(D1):D164–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang Y, Qian F, Bai X, Liu Y, Wang Q, Ai B, et al. SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res. 2019;47(D1):D235–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen C, Zhou D, Gu Y, Wang C, Zhang M, Lin X, et al. SEA version 3.0: a comprehensive extension and update of the Super-Enhancer archive. Nucleic Acids Res. 2020;48(D1):D198-203.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakagaki-Silva EE, Gooding C, Llorian M, Jacob AG, Richards F, Buckroyd A, et al. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. eLife. 2019;8:e46327.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)