• Hennekens CH, Gaziano JM. Antioxidants and heart disease: epidemiology and clinical evidence. Clin Cardiol. 1993;16(4 Suppl 1):I10-13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ismail I, Agarwal A, Aggarwal S, Al-Khafaji N, Gupta N, Badi H, Chopra A, Khosla S, Arora R. Aortic atherosclerosis: a common source of cerebral emboli, often overlooked! Am J Ther. 2016;23(1):e268-272.

    PubMed 
    Article 

    Google Scholar
     

  • Gimbrone MA Jr, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giral H, Kratzer A, Landmesser U. MicroRNAs in lipid metabolism and atherosclerosis. Best Pract Res Clin Endocrinol Metab. 2016;30(5):665–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fatkhullina AR, Peshkova IO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc). 2016;81(11):1358–70.

    CAS 
    Article 

    Google Scholar
     

  • Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yurdagul A Jr, Finney AC, Woolard MD, Orr AW. The arterial microenvironment: the where and why of atherosclerosis. Biochem J. 2016;473(10):1281–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang T, Butany J. Pathogenesis of atherosclerosis. Diagn Histopathol. 2017;23(11):473–8.

    Article 

    Google Scholar
     

  • Tabas I, Garcia-Cardena G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–80.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243–52.

    CAS 
    Article 

    Google Scholar
     

  • McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res. 2011;50(4):331–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steinberg D, Witztum JL. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(12):2311–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linton MF, Atkinson JB, Fazio S. Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science. 1995;267(5200):1034–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marathe S, Choi Y, Leventhal AR, Tabas I. Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler Thromb Vasc Biol. 2000;20(12):2607–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khyzha N, Alizada A, Wilson MD, Fish JE. Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends Mol Med. 2017;23(4):332–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aavik E, Babu M, Yla-Herttuala S. DNA methylation processes in atheosclerotic plaque. Atherosclerosis. 2019;281:168–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ye YS, Gao L, Zhang SH. Circular trajectory reconstruction uncovers cell-cycle progression and regulatory dynamics from single-cell Hi-C maps. Adv Sci. 2019;6(23):13.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Yu F, Zhou X, Zeng S, Zhan Q, Yuan M, Yang Q, Liu Y, Xia J. Promoter hypomethylation of microRNA223 gene is associated with atherosclerotic cerebral infarction. Atherosclerosis. 2017;263:237–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 2020;17(4):216–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xin HY, Lian QY, Jiang YL, Luo JD, Wang XJ, Erb C, Xu ZL, Zhang XY, Heidrich-O’Hare E, Yan Q, et al. GMM-Demux: sample demultiplexing, multiplet detection, experiment planning, and novel cell-type verification in single cell sequencing. Genome Biol. 2020;21(1):35.

    Article 
    CAS 

    Google Scholar
     

  • Skiba DS, Nosalski R, Mikolajczyk TP, Siedlinski M, Rios FJ, Montezano AC, Jawien J, Olszanecki R, Korbut R, Czesnikiewicz-Guzik M, et al. Anti-atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2017;174(22):4055–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ketelhuth DF, Hansson GK. Adaptive response of T and B cells in atherosclerosis. Circ Res. 2016;118(4):668–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Declerck K, Vanden Berghe W. Characterization of blood surrogate immune-methylation biomarkers for immune cell infiltration in chronic inflammaging disorders. Front Genet. 2019;10:1229.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramirez-Ruz J, Gomez A, Goncalves I, Moran S, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Folkersen L, Persson J, Ekstrand J, Agardh HE, Hansson GK, Gabrielsen A, Hedin U, Paulsson-Berne G. Prediction of ischemic events on the basis of transcriptomic and genomic profiling in patients undergoing carotid endarterectomy. Mol Med. 2012;18:669–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ayari H, Bricca G. Identification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysis. J Biosci. 2013;38(2):311–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smyth GK, Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor. Springer, 2005;397–420.

  • Sturm G, Finotello F, List M. Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from Bulk RNA-sequencing data. Methods Mol Biol. 2020;2120:223–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, Guo AY. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci (Weinh). 2020;7(7):1902880.

    CAS 
    Article 

    Google Scholar
     

  • Racle J, Gfeller D. EPIC: a tool to estimate the proportions of different cell types from bulk gene expression data. Methods Mol Biol. 2020;2120:233–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • You Y, Zhao X, Wu Y, Mao J, Ge L, Guo J, Zhao C, Chen D, Song Z. Integrated transcriptome profiling revealed that elevated long non-coding RNA-AC007278.2 expression repressed CCR7 transcription in systemic lupus erythematosus. Front Immunol. 2021;12:1–13.


    Google Scholar
     

  • Mitteer DR, Greer BD, Fisher WW, Cohrs VL. Teaching behavior technicians to create publication-quality, single-case design graphs in graphpad prism 7. J Appl Behav Anal. 2018;51(4):998–1010.

    PubMed 
    Article 

    Google Scholar
     

  • Bolen CR, Uduman M, Kleinstein SH. Cell subset prediction for blood genomic studies. BMC Bioinform. 2011;12:258.

    Article 

    Google Scholar
     

  • Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aavik E, Babu M, Ylä-Herttuala S. DNA methylation processes in atherosclerotic plaque. Atherosclerosis. 2019;281:168–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Valencia-Morales Mdel P, Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramirez-Ruz J, Gomez A, Moran S, et al. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. BMC Med Genom. 2015;8:7.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Reynolds LM, Ding J, Hou L, Lohman K, Young T, Cui W, Huang Z, Grenier C, Wan M, et al. Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. Nat Commun. 2017;8(1):393.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Istas G, Declerck K, Pudenz M, Szic KSV, Lendinez-Tortajada V, Leon-Latre M, Heyninck K, Haegeman G, Casasnovas JA, Tellez-Plaza M, et al. Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Sci Rep. 2017;7(1):5120.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170(2):191–203.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spronk HM, van der Voort D, Ten Cate H. Blood coagulation and the risk of atherothrombosis: a complex relationship. Thromb J. 2004;2(1):12.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ewing E, Kular L, Fernandes SJ, Karathanasis N, Lagani V, Ruhrmann S, Tsamardinos I, Tegner J, Piehl F, Gomez-Cabrero D, et al. Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression. EBioMedicine. 2019;43:411–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Paul DS, Teschendorff AE, Dang MA, Lowe R, Hawa MI, Ecker S, Beyan H, Cunningham S, Fouts AR, Ramelius A, et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun. 2016;7:13555.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mitra S, Lauss M, Cabrita R, Choi J, Zhang T, Isaksson K, Olsson H, Ingvar C, Carneiro A, Staaf J, et al. Analysis of DNA methylation patterns in the tumor immune microenvironment of metastatic melanoma. Mol Oncol. 2020;14(5):933–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin H, Goossens P, Juhasz P, Eijgelaar W, Manca M, Karel JMH, Smirnov E, Sikkink C, Mees BME, Waring O, et al. Integrative multiomics analysis of human atherosclerosis reveals a serum response factor-driven network associated with intraplaque hemorrhage. Clin Transl Med. 2021;11(6): e458.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity. 2019;50(5):1132–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, McNamara CA, Kronenberg M, Crotty S, Thomas MJ, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9(1):1095.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jeziorska M, McCollum C, Woolley DE. Mast cell distribution, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J Pathol. 1997;182(1):115–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun J, Sukhova GK, Wolters PJ, Yang M, Kitamoto S, Libby P, MacFarlane LA, Mallen-St Clair J, Shi GP. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med. 2007;13(6):719–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bonaccorsi I, De Pasquale C, Campana S, Barberi C, Cavaliere R, Benedetto F, Ferlazzo G. Natural killer cells in the innate immunity network of atherosclerosis. Immunol Lett. 2015;168(1):51–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Legein B, Temmerman L, Biessen EA, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013;70(20):3847–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, Yang DY, Trignano SB, Liu W, Shi J, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation. 2020;142(21):2060–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Williams JW, Winkels H, Durant CP, Zaitsev K, Ghosheh Y, Ley K. Single cell RNA sequencing in atherosclerosis research. Circ Res. 2020;126(9):1112–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delaney JAC, Olson NC, Sitlani CM, Fohner AE, Huber SA, Landay AL, Heckbert SR, Tracy RP, Psaty BM, Feinstein M, et al. Natural killer cells, gamma delta T cells and classical monocytes are associated with systolic blood pressure in the multi-ethnic study of atherosclerosis (MESA). BMC Cardiovasc Disord. 2021;21(1):45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng H-Y, Wu R, Hedrick CC. Gammadelta (γδ) T lymphocytes do not impact the development of early atherosclerosis. Atherosclerosis. 2014;234(2):265–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb. 2003;10(5):267–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mohindra R, Agrawal DK, Thankam FG. Altered vascular extracellular matrix in the pathogenesis of atherosclerosis. J Cardiovasc Transl Res. 2021;14:647–60.

    PubMed 
    Article 

    Google Scholar
     

  • Xia X, Wang M, Li J, Chen Q, Jin H, Liang X, Wang L. Identification of potential genes associated with immune cell infiltration in atherosclerosis. Math Biosci Eng. 2021;18(3):2230–42.

    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Gao B, Wu M, Yuan W, Liang P, Huang J. Profiles of immune cell infiltration in carotid artery atherosclerosis based on gene expression data. Front Immunol. 2021;12: 599512.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu J, Yang Y. Potential genes and pathways along with immune cells infiltration in the progression of atherosclerosis identified via microarray gene expression dataset re-analysis. Vascular. 2020;28(5):643–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)