• McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity—towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14(1):22–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–81.

    PubMed 
    Article 

    Google Scholar
     

  • Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 2009;32(3):150–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5–21.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It’s all about tau. Prog Neurobiol. 2019;175:54–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15(3):112–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, et al. Hyperphosphorylation of tau in PHF. Neurobiol Aging. 1995;16(3):365–71; discussion 71–80.

  • Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, et al. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res. 2005;2(1):3–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70(3):410–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kimura T, Hosokawa T, Taoka M, Tsutsumi K, Ando K, Ishiguro K, et al. Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants. Sci Rep. 2016;6:33479.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takahashi S, Saito T, Hisanaga S, Pant HC, Kulkarni AB. Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. The J Biol Chem. 2003;278(12):10506–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shah K, Lahiri DK. Cdk5 activity in the brain—multiple paths of regulation. J Cell Sci. 2014;127(Pt 11):2391–400.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron. 2003;38(4):555–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89(2):297–308.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saito T, Oba T, Shimizu S, Asada A, Iijima KM, Ando K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum Mol Genet. 2019;28(18):3062–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin L, Huang QF, Yang SS, Yang SF, Chu J, Chu JF, et al. Melatonin in Alzheimer’s disease. Int J Mol Sci. 2013;14(7):14575–93.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen D, Zhang T, Lee TH. Cellular mechanisms of melatonin: insight from neurodegenerative diseases. Biomolecules. 2020;10(8):1158.

    PubMed Central 
    Article 

    Google Scholar
     

  • Ali T, Kim MO. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res. 2015;59(1):47–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cardinali DP. Melatonin: clinical perspectives in neurodegeneration. Front Endocrinol (Lausanne). 2019;10:480.

    Article 

    Google Scholar
     

  • Song J. Pineal gland dysfunction in Alzheimer’s disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegener. 2019;14(1):28.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gunata M, Parlakpinar H, Acet HA. Melatonin: A review of its potential functions and effects on neurological diseases. Rev Neurol (Paris). 2020;176(3):148–65.

    CAS 
    Article 

    Google Scholar
     

  • Rudnitskaya EA, Maksimova KY, Muraleva NA, Logvinov SV, Yanshole LV, Kolosova NG, et al. Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease. Biogerontology. 2015;16(3):303–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, et al. Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res. 2011;51(1):75–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003;35(2):125–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu YH, Swaab DF. The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res. 2005;38(3):145–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu YH, Feenstra MG, Zhou JN, Liu RY, Torano JS, Van Kan HJ, et al. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab. 2003;88(12):5898–906.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen D, Mei Y, Kim N, Lan G, Gan CL, Fan F, et al. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer’s disease. J Pineal Res. 2020;69(2): e12665.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ. Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res. 2004;36(3):186–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi C, Zeng J, Li Z, Chen Q, Hang W, Xia L, et al. Melatonin mitigates kainic acid-induced neuronal tau hyperphosphorylation and memory deficits through alleviating ER stress. Front Mol Neurosci. 2018;11:5.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang DL, Ling ZQ, Cao FY, Zhu LQ, Wang JZ. Melatonin attenuates isoproterenol-induced protein kinase A overactivation and tau hyperphosphorylation in rat brain. J Pineal Res. 2004;37(1):11–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luengo E, Buendia I, Fernández-Mendívil C, Trigo-Alonso P, Negredo P, Michalska P, et al. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J Pineal Res. 2019;67(1): e12578.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Corpas R, Grinan-Ferre C, Palomera-Avalos V, Porquet D, Garcia de Frutos P, FranciscatoCozzolino SM, et al. Melatonin induces mechanisms of brain resilience against neurodegeneration. J Pineal Res. 2018;65(4):e12515.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chen C, Yang C, Wang J, Huang X, Yu H, Li S, et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J Pineal Res. 2021;71:e12774.

    CAS 
    PubMed 

    Google Scholar
     

  • Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM, Preiss T, et al. Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-beta. PLoS ONE. 2010;5(6):e11070.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hebert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 2009;32(4):199–206.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33(37):14645–59.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, et al. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol. 2018;136(4):537–55.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang X, Tan L, Lu Y, Peng J, Zhu Y, Zhang Y, et al. MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha. FEBS Lett. 2015;589(6):726–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J. 2014;33(15):1667–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hou TY, Zhou Y, Zhu LS, Wang X, Pang P, Wang DQ, et al. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer’s disease. J Neurochem. 2020;154(4):441–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li J, Chen W, Yi Y, Tong Q. miR-219-5p inhibits tau phosphorylation by targeting TTBK1 and GSK-3beta in Alzheimer’s disease. J Cell Biochem. 2019;120(6):9936–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sakatani A, Sonohara F, Goel A. Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancer cells. Carcinogenesis. 2019;40(3):422–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Z, Li X, Bi J, Chan MTV, Wu WKK, Shen J. Melatonin protected against the detrimental effects of microRNA-363 in a rat model of vitamin A-associated congenital spinal deformities: Involvement of Notch signaling. J Pineal Res. 2019;66(3): e12558.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kim SJ, Kang HS, Lee JH, Park JH, Jung CH, Bae JH, et al. Melatonin ameliorates ER stress-mediated hepatic steatosis through miR-23a in the liver. Biochem Biophys Res Commun. 2015;458(3):462–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Z, Qiu X, Gao B, Lian C, Peng Y, Liang A, et al. Melatonin-mediated miR-526b-3p and miR-590-5p upregulation promotes chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res. 2018;65(1): e12483.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. Antitumor and protective effects of melatonin: the potential roles of microRNAs. Adv Exp Med Biol. 2021;1328:463–71.

    PubMed 
    Article 

    Google Scholar
     

  • Wang K, Cai S, Xing Q, Qi Z, Fotopoulos V, Yu J, et al. Melatonin delays dark-induced leaf senescence by inducing miR171b expression in tomato. J Pineal Res. 2022.

  • Zhao Y, Zhao R, Wu J, Wang Q, Pang K, Shi Q, et al. Melatonin protects against Abeta-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. BioFactors. 2018;44(6):609–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang H, Ma M, Wu Y, Deng MF, Hu F, Almansoub H, et al. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer’s disease via C/EBPalpha/miR-125b pathway. Aging Cell. 2019;18(2):e12902.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang X, Wang ZH, Wu YY, Tang H, Tan L, Wang X, et al. Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol Neurobiol. 2013;47(1):373–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim BM, You MH, Chen CH, Lee S, Hong Y, Hong Y, et al. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis. 2014;5(5): e1237.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lazarevic V, Fienko S, Andres-Alonso M, Anni D, Ivanova D, Montenegro-Venegas C, et al. Physiological concentrations of amyloid beta regulate recycling of synaptic vesicles via Alpha7 acetylcholine receptor and CDK5/calcineurin signaling. Front Mol Neurosci. 2017;10:221.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Das R, Balmik AA, Chinnathambi S. Melatonin reduces GSK3β-mediated tau phosphorylation, enhances Nrf2 nuclear translocation and anti-inflammation. ASN Neuro. 2020;12:1759091420981204.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, et al. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem. 2003;86(3):582–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Polydoro M, Acker CM, Duff K, Castillo PE, Davies P. Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci. 2009;29(34):10741–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frost B, Hemberg M, Lewis J, Feany MB. Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci. 2014;17(3):357–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun W, Samimi H, Gamez M. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci. 2018;21(8):1038–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang D, Yeung J, Lee KY, Matsushita M, Matsui H, Tomizawa K, et al. An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem. 1995;270(45):26897–903.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, et al. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol. 2003;163(1):83–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991;251(4994):675–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goedert M, Spillantini MG, Cairns NJ, Crowther RA. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron. 1992;8(1):159–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matsuo ES, Shin RW, Billingsley ML, Van deVoorde A, O’Connor M, Trojanowski JQ, et al. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron. 1994;13(4):989–1002.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Balmik AA, Das R, Dangi A, Gorantla NV, Marelli UK, Chinnathambi S. Melatonin interacts with repeat domain of Tau to mediate disaggregation of paired helical filaments. Biochim Biophys Acta Gen Subj. 2020;1864(3): 129467.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci. 2005;25(22):5446–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSF. Modulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease. Int J Mol Sci. 2020;21(14):4977.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT. The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol. 2016;53(7):4328–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turab Naqvi AA, Hasan GM, Hassan MI. Targeting Tau hyperphosphorylation via kinase inhibition: strategy to address Alzheimer’s disease. Curr Top Med Chem. 2020;20(12):1059–73.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Castro-Alvarez JF, Uribe-Arias SA, Kosik KS, Cardona-Gómez GP. Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Front Aging Neurosci. 2014;6:243.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piedrahita D, Hernández I, López-Tobón A, Fedorov D, Obara B, Manjunath BS, et al. Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer’s mice. J Neurosci. 2010;30(42):13966–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature. 1994;371(6496):419–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patzke H, Tsai LH. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem. 2002;277(10):8054–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alvira D, Tajes M, Verdaguer E, Acuña-Castroviejo D, Folch J, Camins A, et al. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J Pineal Res. 2006;40(3):251–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cardinali DP, Vigo DE, Olivar N, Vidal MF, Brusco LI. Melatonin therapy in patients with Alzheimer’s disease. Antioxidants (Basel). 2014;3(2):245–77.

    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)