• Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978;15:1109–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozak M. Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes. Cell. 1980;22:7–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hinnebusch AG. The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem. 2014;83:779–812.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999;234:187–208.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292:897–902.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G. A new understanding of the decoding principle on the ribosome. Nature. 2012;484:256–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:8125–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. 1987;196:947–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J, Khavari PA, et al. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol. 2014;10:748.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ivanov IP, Loughran G, Sachs MS, Atkins JF. Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proc Natl Acad Sci U S A. 2010;107:18056–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loughran G, Firth AE, Atkins JF, Ivanov IP. Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection. PLoS One. 2018;13:e0192648.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tang L, Morris J, Wan J, Moore C, Fujita Y, Gillaspie S, et al. Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Nucleic Acids Res. 2017;45:11941–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benitez-Cantos MS, Yordanova MM, O’Connor PBF, Zhdanov AV, Kovalchuk SI, Papkovsky DB, et al. Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Res. 2020;30:974–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cloutier P, Poitras C, Faubert D, Bouchard A, Blanchette M, Gauthier MS, et al. Upstream ORF-encoded ASDURF is a novel prefoldin-like subunit of the PAQosome. J Proteome Res. 2020;19:18–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andreev DE, O’Connor PB, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, et al. Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. Elife. 2015;4:e03971.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brown A, Rathore S, Kimanius D, Aibara S, Bai XC, Rorbach J, et al. Structures of the human mitochondrial ribosome in native states of assembly. Nat Struct Mol Biol. 2017;24:866–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delcourt V, Brunelle M, Roy AV, Jacques JF, Salzet M, Fournier I, et al. The protein coded by a short open reading frame, not by the annotated coding sequence, is the main gene product of the dual-coding gene MIEF1. Mol Cell Proteomics. 2018;17:2402–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rathore A, Chu Q, Tan D, Martinez TF, Donaldson CJ, Diedrich JK, et al. MIEF1 microprotein regulates mitochondrial translation. Biochemistry. 2018;57:5564–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akimoto C, Sakashita E, Kasashima K, Kuroiwa K, Tominaga K, Hamamoto T, et al. Translational repression of the McKusick-Kaufman syndrome transcript by unique upstream open reading frames encoding mitochondrial proteins with alternative polyadenylation sites. Biochim Biophys Acta. 2013;1830:2728–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chew GL, Pauli A, Schier AF. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nat Commun. 2016;7:11663.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gunisova S, Hronova V, Mohammad MP, Hinnebusch AG, Valasek LS. Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol Rev. 2018;42:165–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 2011;147:789–802.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee S, Liu B, Lee S, Huang SX, Shen B, Qian SB. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci U S A. 2012;109:E2424–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritsch C, Herrmann A, Nothnagel M, Szafranski K, Huse K, Schumann F, et al. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res. 2012;22:2208–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loughran G, Sachs MS, Atkins JF, Ivanov IP. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Res. 2012;40:2898–906.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Asano K. Why is start codon selection so precise in eukaryotes? Translation (Austin). 2014;2:e28387.


    Google Scholar
     

  • Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol. 2012;4(10):a011544.

  • Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, Murphy RF, et al. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Res. 2018;28:214–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell. 1988;52:185–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hann SR, Dixit M, Sears RC, Sealy L. The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev. 1994;8:2441–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sato K, Masuda T, Hu Q, Tobo T, Gillaspie S, Niida A, et al. Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer. EBioMedicine. 2019;44:387–402.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tee MK, Jaffe RB. A precursor form of vascular endothelial growth factor arises by initiation from an upstream in-frame CUG codon. Biochem J. 2001;359:219–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang X, Chernenko G, Hao Y, Ding Z, Pater MM, Pater A, et al. Human BAG-1/RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cells. Oncogene. 1998;17:981–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K, et al. Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res. 1998;58:3116–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Froesch BA, Takayama S, Reed JC. BAG-1L protein enhances androgen receptor function. J Biol Chem. 1998;273:11660–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shatkina L, Mink S, Rogatsch H, Klocker H, Langer G, Nestl A, et al. The cochaperone Bag-1L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor. Mol Cell Biol. 2003;23:7189–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cutress RI, Townsend PA, Sharp A, Maison A, Wood L, Lee R, et al. The nuclear BAG-1 isoform, BAG-1L, enhances oestrogen-dependent transcription. Oncogene. 2003;22:4973–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cato L, Neeb A, Sharp A, Buzon V, Ficarro SB, Yang L, et al. Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. Elife. 2017;6:e27159.

  • Bugler B, Amalric F, Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1991;11:573–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, et al. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol. 1999;19:505–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Couderc B, Prats H, Bayard F, Amalric F. Potential oncogenic effects of basic fibroblast growth factor requires cooperation between CUG and AUG-initiated forms. Cell Regul. 1991;2:709–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ivanov IP, Firth AE, Michel AM, Atkins JF, Baranov PV. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res. 2011;39:4220–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J, et al. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science. 2013;341:399–402.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tzani I, Ivanov IP, Andreev DE, Dmitriev RI, Dean KA, Baranov PV, et al. Systematic analysis of the PTEN 5′ leader identifies a major AUU initiated proteoform. Open Biol. 2016;6(5):150203.

  • Michel AM, Andreev DE, Baranov PV. Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning. BMC Bioinformatics. 2014;15:380.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang X, Gao X, Coots RA, Conn CS, Liu B, Qian SB. Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18. Nat Struct Mol Biol. 2015;22:404–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Imataka H, Olsen HS, Sonenberg N. A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 1997;16:817–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kiniry SJ, Judge CE, Michel AM, Baranov PV. Trips-Viz: an environment for the analysis of public and user-generated ribosome profiling data. Nucleic Acids Res. 2021;49(W1):W662–W670.

  • Khan YA, Jungreis I, Wright JC, Mudge JM, Choudhary JS, Firth AE, et al. Evidence for a novel overlapping coding sequence in POLG initiated at a CUG start codon. BMC Genet. 2020;21:25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loughran G, Zhdanov AV, Mikhaylova MS, Rozov FN, Datskevich PN, Kovalchuk SI, et al. Unusually efficient CUG initiation of an overlapping reading frame in POLG mRNA yields novel protein POLGARF. Proc Natl Acad Sci U S A. 2020;117:24936–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma J, Ward CC, Jungreis I, Slavoff SA, Schwaid AG, Neveu J, et al. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res. 2014;13:1757–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Q, Wu E, Tang Y, Zhang L, Wang J, Hao Y, et al. Deeply mining a universe of peptides encoded by long noncoding RNAs. Mol Cell Proteomics. 2021;20:100109.

  • Brunet MA, Lucier JF, Levesque M, Leblanc S, Jacques JF, Al-Saedi HRH, et al. OpenProt 2021: deeper functional annotation of the coding potential of eukaryotic genomes. Nucleic Acids Res. 2021;49:D380–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Q, Wright M, Gogol MM, Bradford WD, Zhang N, Bazzini AA. Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J. 2020;39:e104763.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Zhang J. Mammalian alternative translation initiation is mostly nonadaptive. Mol Biol Evol. 2020;37:2015–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ivanov IP, Loughran G, Atkins JF. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc Natl Acad Sci U S A. 2008;105:10079–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hill JR, Morris DR. Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Dependence on translation and coding capacity of the cis-acting upstream open reading frame. J Biol Chem. 1993;268:726–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hardy S, Kostantin E, Wang SJ, Hristova T, Galicia-Vazquez G, Baranov PV, et al. Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A. 2019;116:2925–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, et al. Translation from the 5′ untranslated region shapes the integrated stress response. Science. 2016;351:aad3867.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Andreev DE, O’Connor PB, Zhdanov AV, Dmitriev RI, Shatsky IN, Papkovsky DB, et al. Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes. Genome Biol. 2015;16:90.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lynch M, Marinov GK. The bioenergetic costs of a gene. Proc Natl Acad Sci U S A. 2015;112:15690–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bullock TN, Eisenlohr LC. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames. J Exp Med. 1996;184:1319–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei J, Kishton RJ, Angel M, Conn CS, Dalla-Venezia N, Marcel V, et al. Ribosomal proteins regulate MHC class I peptide generation for immunosurveillance. Mol Cell. 2019;73(1162-1173):e1165.


    Google Scholar
     

  • Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, et al. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science. 2012;336:1719–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prensner JR, Enache OM, Luria V, Krug K, Clauser KR, Dempster JM, et al. Noncanonical open reading frames encode functional proteins essential for cancer cell survival. Nat Biotechnol. 2021;39:697–704.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sendoel A, Dunn JG, Rodriguez EH, Naik S, Gomez NC, Hurwitz B, et al. Translation from unconventional 5′ start sites drives tumour initiation. Nature. 2017;541:494–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen L, Cleary JD, Ranum LPW. Repeat-associated non-ATG translation: molecular mechanisms and contribution to neurological disease. Annu Rev Neurosci. 2019;42:227–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Todd TW, Petrucelli L. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem. 2016;138(Suppl 1):145–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis. 2019;130:104515.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M, et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron. 2013;78:440–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kearse MG, Green KM, Krans A, Rodriguez CM, Linsalata AE, Goldstrohm AC, et al. CGG repeat-associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxic proteins. Mol Cell. 2016;62:314–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singh CR, Glineburg MR, Moore C, Tani N, Jaiswal R, Zou Y, et al. Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Rep. 2021;36:109376.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Diaz de Arce AJ, Noderer WL, Wang CL. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons. Nucleic Acids Res. 2018;46:985–94.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kameda T, Asano K, Togashi Y. Free energy landscape of RNA binding dynamics in start codon recognition by eukaryotic ribosomal pre-initiation complex. PLoS Comput Biol. 2021;17:e1009068.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boeck R, Kolakofsky D. Positions +5 and +6 can be major determinants of the efficiency of non-AUG initiation codons for protein synthesis. EMBO J. 1994;13:3608–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grunert S, Jackson RJ. The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO J. 1994;13:3618–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Donahue TF, Cigan AM, Pabich EK, Valavicius BC. Mutations at a Zn(II) finger motif in the yeast eIF-2 beta gene alter ribosomal start-site selection during the scanning process. Cell. 1988;54:621–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castilho-Valavicius B, Yoon H, Donahue TF. Genetic characterization of the Saccharomyces cerevisiae translational initiation suppressors sui1, sui2 and SUI3 and their effects on HIS4 expression. Genetics. 1990;124:483–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang HK, Yoon H, Hannig EM, Donahue TF. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 1997;11:2396–413.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pestova TV, Borukhov SI, Hellen CU. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature. 1998;394:854–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andreev D, Hauryliuk V, Terenin I, Dmitriev S, Ehrenberg M, Shatsky I. The bacterial toxin RelE induces specific mRNA cleavage in the A site of the eukaryote ribosome. RNA. 2008;14:233–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheung YN, Maag D, Mitchell SF, Fekete CA, Algire MA, Takacs JE, et al. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev. 2007;21:1217–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Obayashi E, Luna RE, Nagata T, Martin-Marcos P, Hiraishi H, Singh CR, et al. Molecular landscape of the ribosome pre-initiation complex during mRNA scanning: structural role for eIF3c and its control by eIF5. Cell Rep. 2017;18:2651–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valasek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol Cell Biol. 2004;24:9437–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, et al. The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci U S A. 2005;102:16164–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Luna RE, Arthanari H, Hiraishi H, Nanda J, Martin-Marcos P, Markus MA, et al. The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2beta. Cell Rep. 2012;1:689–702.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS, He H, et al. Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol Cell Biol. 2005;25:5480–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Asano K, Clayton J, Shalev A, Hinnebusch AG. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev. 2000;14:2534–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Llacer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, et al. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. Elife. 2018;7:e39273.

  • Singh CR, Watanabe R, Zhou D, Jennings MD, Fukao A, Lee B, et al. Mechanisms of translational regulation by a human eIF5-mimic protein. Nucleic Acids Res. 2011;39:8314–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fijalkowska D, Verbruggen S, Ndah E, Jonckheere V, Menschaert G, Van Damme P. eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs. Nucleic Acids Res. 2017;45:7997–8013.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1990;87:8301–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kozak M, Shatkin AJ. Sequences and properties of two ribosome binding sites from the small size class of reovirus messenger RNA. J Biol Chem. 1977;252:6895–908.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steitz JA. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature. 1969;224:957–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wolin SL, Walter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 1988;7:3559–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ray BK, Lawson TG, Kramer JC, Cladaras MH, Grifo JA, Abramson RD, et al. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem. 1985;260:7651–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grifo JA, Tahara SM, Leis JP, Morgan MA, Shatkin AJ, Merrick WC. Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. J Biol Chem. 1982;257:5246–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC, et al. mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol. 2011;12:235–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murat P, Marsico G, Herdy B, Ghanbarian AT, Portella G, Balasubramanian S. RNA G-quadruplexes at upstream open reading frames cause DHX36- and DHX9-dependent translation of human mRNAs. Genome Biol. 2018;19:229.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guenther UP, Weinberg DE, Zubradt MM, Tedeschi FA, Stawicki BN, Zagore LL, et al. The helicase Ded1p controls use of near-cognate translation initiation codons in 5′ UTRs. Nature. 2018;559:130–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Medenbach J, Seiler M, Hentze MW. Translational control via protein-regulated upstream open reading frames. Cell. 2011;145:902–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dinesh-Kumar SP, Miller WA. Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell. 1993;5:679–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kearse MG, Goldman DH, Choi J, Nwaezeapu C, Liang D, Green KM, et al. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes Dev. 2019;33:871–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Price NT, Redpath NT, Severinov KV, Campbell DG, Russell JM, Proud CG. Identification of the phosphorylation sites in elongation factor-2 from rabbit reticulocytes. FEBS Lett. 1991;282:253–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ovchinnikov LP, Motuz LP, Natapov PG, Averbuch LJ, Wettenhall RE, Szyszka R, et al. Three phosphorylation sites in elongation factor 2. FEBS Lett. 1990;275:209–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nairn AC, Palfrey HC. Identification of the major Mr 100,000 substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. J Biol Chem. 1987;262:17299–303.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ryazanov AG. Ca2+/calmodulin-dependent phosphorylation of elongation factor 2. FEBS Lett. 1987;214:331–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ryazanov AG, Davydova EK. Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation. Phosphorylated EF-2 is unable to catalyze translocation. FEBS Lett. 1989;251:187–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Knebel A, Morrice N, Cohen P. A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J. 2001;20:4360–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20:4370–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Browne GJ, Finn SG, Proud CG. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem. 2004;279:12220–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, et al. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 2002;12:1419–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Celis JE, Madsen P, Ryazanov AG. Increased phosphorylation of elongation factor 2 during mitosis in transformed human amnion cells correlates with a decreased rate of protein synthesis. Proc Natl Acad Sci U S A. 1990;87:4231–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ivanov IP, Shin BS, Loughran G, Tzani I, Young-Baird SK, Cao C, et al. Polyamine control of translation elongation regulates start site selection on antizyme inhibitor mRNA via ribosome queuing. Mol Cell. 2018;70(254-264):e256.


    Google Scholar
     

  • Pelechano V, Alepuz P. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences. Nucleic Acids Res. 2017;45:7326–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saini P, Eyler DE, Green R, Dever TE. Hypusine-containing protein eIF5A promotes translation elongation. Nature. 2009;459:118–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schuller AP, Wu CC, Dever TE, Buskirk AR, Green R. eIF5A functions globally in translation elongation and termination. Mol Cell. 2017;66(194-205):e195.


    Google Scholar
     

  • Manjunath H, Zhang H, Rehfeld F, Han J, Chang TC, Mendell JT. Suppression of ribosomal pausing by eIF5A is necessary to maintain the fidelity of start codon selection. Cell Rep. 2019;29(3134-3146):e3136.


    Google Scholar
     

  • Eisenberg AR, Higdon AL, Hollerer I, Fields AP, Jungreis I, Diamond PD, et al. Translation initiation site profiling reveals widespread synthesis of non-AUG-initiated protein isoforms in yeast. Cell Syst. 2020;11(145-160):e145.

    Article 
    CAS 

    Google Scholar
     

  • Chen J, Brunner AD, Cogan JZ, Nunez JK, Fields AP, Adamson B, et al. Pervasive functional translation of noncanonical human open reading frames. Science. 2020;367:1140–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zu T, Pattamatta A, Ranum LPW. Repeat-associated non-ATG translation in neurological diseases. Cold Spring Harb Perspect Biol. 2018;10(12):a033019.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)