• Ramanan VK, Saykin AJ. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis. 2013;2(3):145–75.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech. 2017;10(5):499–502.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heemels M-T. Neurodegenerative diseases. Nature. 2016;539(7628):179.

    PubMed 
    Article 

    Google Scholar
     

  • The 2012 Ageing Report: Economic and budgetary projections for the 27 EU Member States (2010–2060) – European Commission [Internet]. [cited 2020 May 29]. https://ec.europa.eu/economy_finance/publications/european_economy/2012/2012-ageing-report_en.htm

  • Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002;295(5556):865–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313(5785):324–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci U S A. 2000;97(4):1589–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995;92(20):9368–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Han SSW, Williams LA, Eggan KC. Constructing and deconstructing stem cell models of neurological disease. Neuron. 2011;70(4):626–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rm M, Sp P. Neural differentiation in the third dimension: generating a human midbrain. Cell Stem Cell. 2016;19(2):145–6.

    Article 
    CAS 

    Google Scholar
     

  • Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12(7):671–8.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • More SV, Kumar H, Kim IS, Song S-Y, Choi D-K. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm. 2013;2013:952375.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lampa J, Westman M, Kadetoff D, Agréus AN, Le Maître E, Gillis-Haegerstrand C, et al. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice. Proc Natl Acad Sci U S A. 2012;109(31):12728–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen W-W, Zhang X, Huang W-J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep. 2016;13(4):3391–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prendergast CT, Anderton SM. Immune cell entry to central nervous system–current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets. 2009;9(4):315–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moore AH, Bigbee MJ, Boynton GE, Wakeham CM, Rosenheim HM, Staral CJ, et al. Non-steroidal anti-inflammatory drugs in Alzheimer’s disease and Parkinson’s disease: reconsidering the role of neuroinflammation. Pharmaceuticals. 2010;3(6):1812–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwartz M, Kipnis J, Rivest S, Prat A. How do immune cells support and shape the brain in health, disease, and aging? J Neurosci Off J Soc Neurosci. 2013;33(45):17587–96.

    CAS 
    Article 

    Google Scholar
     

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol (Berl). 2010;119(1):7–35.

    Article 

    Google Scholar
     

  • Das SJ. Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol. 2014;20(2):122–36.

    Article 
    CAS 

    Google Scholar
     

  • Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurother J Am Soc Exp Neurother. 2010;7(4):354–65.

    CAS 

    Google Scholar
     

  • Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science. 2002;296(5575):1991–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 2014;69:35–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Block ML, Hong J-S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prince MJ. World Alzheimer Report 2015: The Global Impact of Dementia [Internet]. 2015 [cited 2020 May 29]. https://www.alz.co.uk/research/world-report-2015

  • Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement J Alzheimers Assoc. 2013;9(1):63-75.e2.

    Article 

    Google Scholar
     

  • Neugroschl J, Wang S. Alzheimer’s disease: diagnosis and treatment across the spectrum of disease severity. Mt Sinai J Med N Y. 2011;78(4):596–612.

    Article 

    Google Scholar
     

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, et al. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging. 1999;20(6):581–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol. 1998;152(1):307–17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masliah E, Mallory M, Hansen L, Alford M, Albright T, Terry R, et al. Immunoreactivity of CD45, a protein phosphotyrosine phosphatase Alzheimer’s disease. Acta Neuropathol (Berl). 1991;83(1):12–20.

    CAS 
    Article 

    Google Scholar
     

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet Lond Engl. 2001;358(9280):461–7.

    CAS 
    Article 

    Google Scholar
     

  • Lue LF, Walker DG, Rogers J. Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol Aging. 2001;22(6):945–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sheng W, Yang F, Zhou Y, Yang H, Low PY, Kemeny DM, et al. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res. 2014;24(12):1387–402.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9(4):453–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drexler SK, Foxwell BM. The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol. 2010;42(4):506–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol. 2013;94(1):55–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137(1):47–59.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, et al. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci Off J Soc Neurosci. 2008;28(16):4283–92.

    CAS 
    Article 

    Google Scholar
     

  • Stalder M, Phinney A, Probst A, Sommer B, Staufenbiel M, Jucker M. Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am J Pathol. 1999;154(6):1673–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci Off J Soc Neurosci. 2008;28(33):8354–60.

    CAS 
    Article 

    Google Scholar
     

  • Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature. 1995;374(6523):647–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. 2012;2(6):a008870.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.

    PubMed 
    Article 

    Google Scholar
     

  • Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med. 2012;2(8).

  • Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2008;23(4):474–83.

    Article 

    Google Scholar
     

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience. 1993;52(1):1–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGeer EG, McGeer PL. The importance of inflammatory mechanisms in alzheimer disease. Exp Gerontol. 1998;33(5):371–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202(1–2):17–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett. 1994;180(2):147–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su B, Wang X, Nunomura A, Moreira PI, Lee H-G, Perry G, et al. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res. 2008;5(6):525–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2009;4(4):462–75.

    Article 

    Google Scholar
     

  • Rowland LP. Amyotrophic lateral sclerosis. Curr Opin Neurol. 1994;7(4):310–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65(S1):S3-9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar V, Islam A, Hassan MI, Ahmad F. Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem. 2016;4(121):903–17.

    Article 
    CAS 

    Google Scholar
     

  • Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2002;(2):CD001447.

  • Geevasinga N, Menon P, Özdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol. 2016;12(11):651–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science. 1996;271(5248):515–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Graves MC, Fiala M, Dinglasan LAV, Liu NQ, Sayre J, Chiappelli F, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Mot Neuron Disord Off Publ World Fed Neurol Res Group Mot Neuron Dis. 2004;5(4):213–9.

    CAS 

    Google Scholar
     

  • Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10(3):253–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • D. SS, J. B, C. LA, H T. Biochemical markers in CSF of ALS patients. Curr Med Chem. 2008;15(18):1788–1801.

  • Kuhle J, Lindberg RLP, Regeniter A, Mehling M, Steck AJ, Kappos L, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16(6):771–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu Y, Cao C, Qin X-Y, Yu Y, Yuan J, Zhao Y, et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis. Sci Rep. 2017;7(1):9094.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Seibert K, Masferrer JL. Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor. 1994;4(1):17–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Almer G, Guégan C, Teismann P, Naini A, Rosoklija G, Hays AP, et al. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol. 2001;49(2):176–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Komine O, Yamanaka K. Neuroinflammation in motor neuron disease. Nagoya J Med Sci. 2015;77(4):537–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin S, Al Khleifat A, Al-Chalabi A. What causes amyotrophic lateral sclerosis? F1000Research. 2017;6:371.

  • Chen X, Pan W. The treatment strategies for neurodegenerative diseases by integrative medicine. Integr Med Int. 2014;1(4):223–5.

    Article 

    Google Scholar
     

  • Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci. 2003;23(20):7504–9.

    CAS 
    Article 

    Google Scholar
     

  • Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci Off J Soc Neurosci. 2000;20(15):5709–14.

    CAS 
    Article 

    Google Scholar
     

  • Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest. 2015;125(1):234–47.

    PubMed 
    Article 

    Google Scholar
     

  • Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aisen PS, Schmeidler J, Pasinetti GM. Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology. 2002;58(7):1050–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Jong D, Jansen R, Hoefnagels W, Jellesma-Eggenkamp M, Verbeek M, Borm G, et al. No Effect of One-Year Treatment with Indomethacin on Alzheimer’s Disease Progression: A Randomized Controlled Trial. PLoS ONE [Internet]. 2008 Jan 23 [cited 2020 May 29];3(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194921/

  • Pasqualetti P, Bonomini C, Dal Forno G, Paulon L, Sinforiani E, Marra C, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin Exp Res. 2009;21(2):102–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reines SA, Block GA, Morris JC, Liu G, Nessly ML, Lines CR, et al. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology. 2004;62(1):66–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soininen H, West C, Robbins J, Niculescu L. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2007;23(1):8–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thal LJ, Ferris SH, Kirby L, Block GA, Lines CR, Yuen E, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2005;30(6):1204–15.

    CAS 
    Article 

    Google Scholar
     

  • Small GW, Siddarth P, Silverman DHS, Ercoli LM, Miller KJ, Lavretsky H, et al. Cognitive and cerebral metabolic effects of celecoxib versus placebo in people with age-related memory loss: randomized controlled study. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry. 2008;16(12):999–1009.

    Article 

    Google Scholar
     

  • Poly TN, Islam MMR, Yang H-C, Li Y-CJ. Non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol. 2019;75(1):99–108.

  • Samii A, Etminan M, Wiens MO, Jafari S. NSAID use and the risk of Parkinson’s disease: systematic review and meta-analysis of observational studies. Drugs Aging. 2009;26(9):769–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ren L, Yi J, Yang J, Li P, Cheng X, Mao P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine (Baltimore) [Internet]. 2018 Sep 14 [cited 2020 May 29];97(37). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155958/

  • Fondell E, O’Reilly ÉJ, Fitzgerald KC, Falcone GJ, McCullough ML, Thun MJ, et al. Non-steroidal anti-inflammatory drugs and amyotrophic lateral sclerosis: results from five prospective cohort studies. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Mot Neuron Dis. 2012;13(6):573–9.

    CAS 

    Google Scholar
     

  • Popat RA, Tanner CM, van den Eeden SK, Bernstein AL, Bloch DA, Leimpeter A, et al. Effect of non-steroidal anti-inflammatory medications on the risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Mot Neuron Dis. 2007;8(3):157–63.

    CAS 

    Google Scholar
     

  • Williamson G. The role of polyphenols in modern nutrition. Nutr Bull. 2017;42(3):226–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2007;20(6):947–56.

    CAS 
    Article 

    Google Scholar
     

  • Feterowski C, Emmanuilidis K, Miethke T, Gerauer K, Rump M, Ulm K, et al. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology. 2003;109(3):426–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akira S, Takeda K. Functions of toll-like receptors: lessons from KO mice. C R Biol. 2004;327(6):581–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Banjara M, Ghosh C. Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflam. 2017;2017:8385961. https://doi.org/10.1155/2017/8385961.

  • Träger U, Tabrizi SJ. Peripheral inflammation in neurodegeneration. J Mol Med Berl Ger. 2013;91(6):673–81.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)