• Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Betzer O, Shilo M, Opochinsky R, Barnoy E, Motiei M, Okun E, Yadid G, Popovtzer R. The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. Nanomed (Lond). 2017;12(13):1533–46.

    CAS 
    Article 

    Google Scholar
     

  • Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6(4):2146–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hewitt RE, Chappell HF, Powell JJ. Small and dangerous? Potential toxicity mechanisms of common exposure particles and nanoparticles. Curr Opin Toxicol. 2020;19:93–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaya H, Aydin F, Gurkan M, Yilmaz S, Ates M, Demir V, Arslan Z. A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere. 2016;144:571–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sindhwani S, Syed AM, Wilhelm S, Glancy DR, Chen YY, Dobosz M, Chan WC. Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano. 2016;10(5):5468–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol. 2014;37(3):336–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kagan VE, Bayir H, Shvedova AA. Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine. 2005;1(4):313–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Afkhami A, Saber-Tehrani M, Bagheri H. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater. 2010;181(1–3):836–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Q, Ding Y, He K, Li H, Gao F, Moehling TJ, Wu X, Duncan J, Niu Q. Exposure to alumina nanoparticles in female mice during pregnancy induces neurodevelopmental toxicity in the offspring. Front Pharmacol. 2018;9:253.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Huang T, Guo W, Wang Y, Chang L, Shang N, Chen J, Fan R, Zhang L, Gao X, Niu Q, et al. Involvement of mitophagy in aluminum oxide nanoparticle-induced impairment of learning and memory in mice. Neurotox Res. 2021;39(2):378–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen J, Fan R, Wang Y, Huang T, Shang N, He K, Zhang P, Zhang L, Niu Q, Zhang Q. Progressive impairment of learning and memory in adult zebrafish treated by Al2O3 nanoparticles when in embryos. Chemosphere. 2020;254:126608.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bear MF, Abraham WC. Long-term depression in hippocampus. Annu Rev Neurosci. 1996;19:437–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996;87(7):1327–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Okada T, Yamada N, Tsuzuki K, Horikawa HP, Tanaka K, Ozawa S. Long-term potentiation in the hippocampal CA1 area and dentate gyrus plays different roles in spatial learning. Eur J Neurosci. 2003;17(2):341–9.

    PubMed 
    Article 

    Google Scholar
     

  • Sengar AS, Li H, Zhang W, Leung C, Ramani AK, Saw NM, Wang Y, Tu Y, Ross PJ, Scherer SW, et al. Control of long-term synaptic potentiation and learning by alternative splicing of the NMDA receptor subunit GluN1. Cell Rep. 2019;29(13):4285-94 e4285.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fedulov V, Rex CS, Simmons DA, Palmer L, Gall CM, Lynch G. Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. J Neurosci. 2007;27(30):8031–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W, Li T, Wang YT. Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology. 2013;64:65–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rutten K, Wallace TL, Works M, Prickaerts J, Blokland A, Novak TJ, Santarelli L, Misner DL. Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B-/-) mice. Neuropharmacology. 2011;61(1–2):138–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dietz B, Manahan-Vaughan D. Hippocampal long-term depression is facilitated by the acquisition and updating of memory of spatial auditory content and requires mGlu5 activation. Neuropharmacology. 2017;115:30–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Sun W. Acute melamine affects spatial memory consolidation via inhibiting hippocampal NMDAR-dependent LTD in rats. Toxicol Sci. 2018;163(2):385–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of postnatal proBDNF in the hippocampus for spatial memory consolidation and neural function. Front Cell Dev Biol. 2021;9:678182.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, Wang YT. Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci U S A. 2010;107(38):16697–702.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ. Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry. 2014;75(5):361–70.

    PubMed 
    Article 

    Google Scholar
     

  • Howland JG, Wang YT. Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res. 2008;169:145–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bertocci MA, Bergman J, Santos JPL, Iyengar S, Bonar L, Gill MK, Abdul-Waalee H, Bebko G, Stiffler R, Lockovich J, et al. Emotional regulation neural circuitry abnormalities in adult bipolar disorder: dissociating effects of long-term depression history from relationships with present symptoms. Transl Psychiatry. 2020;10(1):374.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miller JF, Neufang M, Solway A, Brandt A, Trippel M, Mader I, Hefft S, Merkow M, Polyn SM, Jacobs J, et al. Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. Science. 2013;342(6162):1111–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • An L, Li X, Tang C, Xu N, Sun W. Hippocampal proBDNF facilitates place learning strategy associated with neural activity in rats. Brain Struct Funct. 2018;223(9):4099–113.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McKenzie S, Huszar R, English DF, Kim K, Christensen F, Yoon E, Buzsaki G. Preexisting hippocampal network dynamics constrain optogenetically induced place fields. Neuron. 2021;109(6):1040–54 e1047.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Knudsen EB, Wallis JD. Hippocampal neurons construct a map of an abstract value space. Cell. 2021;184(18):4640–50 e4610.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kinsky NR, Sullivan DW, Mau W, Hasselmo ME, Eichenbaum HB. Hippocampal place fields maintain a coherent and flexible map across long timescales. Curr Biol. 2018;28(22):3578-88 e3576.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 1990;9(8):2459–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun W, Che H, Li J, Tang D, Liu X, Liu W, An L. Dorsolateral striatal proBDNF improves reversal learning by enhancing coordination of neural activity in rats. Mol Neurobiol. 2020;57(11):4642–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Li J, Cui S, Luo L, Huang P, Tang C, An L. Sleep deprivation disrupts acquisition of contextual fear extinction by affecting circadian oscillation of hippocampal-infralimbic proBDNF. eNeuro 2019;6(5).

  • Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci. 2005;8(8):1069–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B. Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol. 2009;185(4):727–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mehrbeheshti N, Esmaili Z, Ahmadi M, Moosavi M. A dose response effect of oral aluminum nanoparticle on novel object recognition memory, hippocampal caspase-3 and MAPKs signaling in mice. Behav Brain Res. 2022;417:113615.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Esmaili Z, Soukhaklari R, Farokhi MR, Absalan S, Moosavi M. The impairing effect of oral aluminum oxide nanoparticle on novel object recognition memory coincides with Akt/GSK-3β signaling deregulation in mice hippocampus. BioNanoScience. 2021;11:1119–26.

    Article 

    Google Scholar
     

  • Shah SA, Yoon GH, Ahmad A, Ullah F, Ul Amin F, Kim MO. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Abeta) production in ICR female mice. Nanoscale. 2015;7(37):15225–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang B, Wang L, Nie Y, Wei W, Xiong W. proBDNF expression induces apoptosis and inhibits synaptic regeneration by regulating the RhoA-JNK pathway in an in vitro post-stroke depression model. Transl Psychiatry. 2021;11(1):578.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ, Bath KG, Mark W, et al. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014;7(3):796–806.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF. ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS ONE. 2012;7(4):e35883.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li X, Sun W, An L. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats. Toxicol Ind Health. 2018;34(6):409–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Liu S, Yang Z, Zhang T. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett. 2012;213(2):220–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma HS, Ali SF, Hussain SM, Schlager JJ, Sharma A. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol. 2009;9(8):5055–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zavvari F, Nahavandi A, Shahbazi A. Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. J Chem Neuroanat. 2020;106:101799.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanati M, Khodagholi F, Aminyavari S, Ghasemi F, Gholami M, Kebriaeezadeh A, Sabzevari O, Hajipour MJ, Imani M, Mahmoudi M, et al. Impact of gold nanoparticles on amyloid beta-induced Alzheimer’s disease in a rat animal model: involvement of STIM proteins. ACS Chem Neurosci. 2019;10(5):2299–309.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Li X, An L. Distinct roles of prelimbic and infralimbic proBDNF in extinction of conditioned fear. Neuropharmacology. 2018;131:11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Li J, Luo L, Huang P, Liu P, Tang C, Sun W. Prenatal melamine exposure impairs cognitive flexibility and hippocampal synaptic plasticity in adolescent and adult female rats. Pharmacol Biochem Behav. 2019;186:172791.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Zhang T. Vitamins C and E reverse melamine-induced deficits in spatial cognition and hippocampal synaptic plasticity in rats. Neurotoxicology. 2014;44:132–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Li Z, Yang Z, Zhang T. Cognitive deficits induced by melamine in rats. Toxicol Lett. 2011;206(3):276–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Sun W. Prenatal melamine exposure induces impairments of spatial cognition and hippocampal synaptic plasticity in female adolescent rats. Neurotoxicology. 2017;62:56–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Yang Z, Zhang T. Melamine induced spatial cognitive deficits associated with impairments of hippocampal long-term depression and cholinergic system in Wistar rats. Neurobiol Learn Mem. 2013;100:18–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Yang Y, Mei Y, Wu Y, Chen X, An L. Prenatal cyanuric acid exposure depresses hippocampal synaptic plasticity and induces spatial learning and memory deficits. Toxicol Lett. 2021;354:24–32.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sun W, Wu Y, Tang D, Li X, An L. Melamine disrupts spatial reversal learning and learning strategy via inhibiting hippocampal BDNF-mediated neural activity. PLoS ONE. 2021;16(1):e0245326.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun W, Yang Y, Wu Z, Chen X, Li W, An L. Chronic cyanuric acid exposure depresses hippocampal LTP but does not disrupt spatial learning or memory in the Morris water Maze. Neurotox Res. 2021;39(4):1148–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Li X, Tang C, An L. Acute low alcohol disrupts hippocampus-striatum neural correlate of learning strategy by inhibition of PKA/CREB pathway in rats. Front Pharmacol. 2018;9:1439.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun W, Tang D, Yang Y, Wu Z, Li X, An L. Melamine impairs working memory and reduces prefrontal activity associated with inhibition of AMPA receptor GluR2/3 subunit expression. Toxicol Lett. 2021;350:171–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Li X, Tang D, Wu Y, An L. Subacute melamine exposure disrupts task-based hippocampal information flow via inhibiting the subunits 2 and 3 of AMPA glutamate receptors expression. Hum Exp Toxicol. 2021;40(6):928–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Sun W. Prenatal melamine exposure impairs spatial cognition and hippocampal synaptic plasticity by presynaptic and postsynaptic inhibition of glutamatergic transmission in adolescent offspring. Toxicol Lett. 2017;269:55–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Zhang T. Prenatal ethanol exposure impairs spatial cognition and synaptic plasticity in female rats. Alcohol. 2015;49(6):581–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Zhang T. Spatial cognition and sexually dimorphic synaptic plasticity balance impairment in rats with chronic prenatal ethanol exposure. Behav Brain Res. 2013;256:564–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Yang Z, Zhang T. Imbalanced synaptic plasticity induced spatial cognition impairment in male offspring rats treated with chronic prenatal ethanol exposure. Alcoholism-Clinical and Experimental Research. 2013;37(5):763–70.

    CAS 
    Article 

    Google Scholar
     

  • An L, Zhang T. Comparison impairments of spatial cognition and hippocampal synaptic plasticity between prenatal and postnatal melamine exposure in male adult rats. Neurotox Res. 2016;29(2):218–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An L, Zhang T. Prenatal melamine exposure induces impairments of spatial cognition and hippocampal synaptic plasticity in male adolescent rats. Reprod Toxicol. 2014;49:78–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Yang Y, Chen X, Cheng Y, Li X, An L. Light promotes neural correlates of fear memory via enhancing brain-derived neurotrophic factor (BDNF) expression in the prelimbic cortex. ACS Chem Neurosci. 2021;12(10):1802–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun W, Liu P, Tang C, An L. Melamine disrupts acetylcholine-mediated neural information flow in the hippocampal CA3-CA1 pathway. Front Behav Neurosci. 2021;15:594907.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhattacharjee S, Zhao Y, Hill JM, Percy ME, Lukiw WJ. Aluminum and its potential contribution to Alzheimer’s disease (AD). Front Aging Neurosci. 2014;6:62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLachlan DR. Aluminum and Alzheimer’s disease. Neurobiol Aging. 1986;7(6):525–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu H, Zhang W, Fang Y, Yang H, Tian L, Li K, Lai W, Bian L, Lin B, Liu X, et al. Neurotoxicity of aluminum oxide nanoparticles and their mechanistic role in dopaminergic neuron injury involving p53-related pathways. J Hazard Mater. 2020;392:122312.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, Jiao W, Cui H, Sun Q, Fan H. Combined exposure of alumina nanoparticles and chronic stress exacerbates hippocampal neuronal ferroptosis via activating IFN-gamma/ASK1/JNK signaling pathway in rats. J Hazard Mater. 2021;411:125179.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Braydich-Stolle LK, Speshock JL, Castle A, Smith M, Murdock RC, Hussain SM. Nanosized aluminum altered immune function. ACS Nano. 2010;4(7):3661–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Q, Wang H, Ge C, Duncan J, He K, Adeosun SO, Xi H, Peng H, Niu Q. Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity. J Appl Toxicol. 2017;37(9):1053–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li XB, Liu R, Liang GY, Yin LH, Zheng H. Aluminum oxide nanoparticles upregulate ED1 expression in rat Olfactory Bulbs by repeated intranasal instillation. In: Advanced Materials Research: 2013. Trans Tech Publ; 2013. pp. 3–9.

  • Cai D, Holm JM, Duignan IJ, Zheng J, Xaymardan M, Chin A, Ballard VL, Bella JN, Edelberg JM. BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiol Genomics. 2006;24(3):191–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li H, Xue X, Li Z, Pan B, Hao Y, Niu Q. Aluminium-induced synaptic plasticity injury via the PHF8-H3K9me2-BDNF signalling pathway. Chemosphere. 2020;244:125445.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dong Y, Hong W, Tang Z, Gao Y, Wu X, Liu H. Dexmedetomidine attenuates neurotoxicity in developing rats induced by sevoflurane through upregulating BDNF-TrkB-CREB and downregulating ProBDNF-P75NRT-RhoA signaling pathway. Mediators Inflamm. 2020;2020:5458061.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14(1):7–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Benarroch EE. Brain-derived neurotrophic factor: regulation, effects, and potential clinical relevance. Neurology. 2015;84(16):1693–704.

    PubMed 
    Article 

    Google Scholar
     

  • Etkin A, Alarcon JM, Weisberg SP, Touzani K, Huang YY, Nordheim A, Kandel ER. A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron. 2006;50(1):127–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heynen AJ, Abraham WC, Bear MF. Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature. 1996;381(6578):163–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malenka RC. LTP and LTD: dynamic and interactive processes of synaptic plasticity. The Neuroscientist. 1995;1(1):35–42.

    Article 

    Google Scholar
     

  • Whalley K. Balancing LTP and LTD. Nat Rev Neurosci. 2007;8(4):249–9.

    CAS 
    Article 

    Google Scholar
     

  • Griffitt RJ, Feswick A, Weil R, Hyndman K, Carpinone P, Powers K, Denslow ND, Barber DS. Investigation of acute nanoparticulate aluminum toxicity in zebrafish. Environ Toxicol. 2011;26(5):541–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian J, Xie ZJ. The Na-K-ATPase and calcium-signaling microdomains. Physiol (Bethesda). 2008;23:205–11.

    CAS 

    Google Scholar
     

  • Lee D, Hong JH. Physiological application of nanoparticles in calcium-related proteins and channels. Nanomed (Lond). 2019;14(18):2479–86.

    CAS 
    Article 

    Google Scholar
     

  • Engin AB, Engin A. Nanoparticles and neurotoxicity: dual response of glutamatergic receptors. Prog Brain Res. 2019;245:281–303.

    PubMed 
    Article 

    Google Scholar
     

  • Poborilova Z, Opatrilova R, Babula P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot. 2013;91:1–11.

    CAS 
    Article 

    Google Scholar
     

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22(1):64–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kermani ZR, Haghighi SS, Hajihosseinali S, Fashami AZ, Akbaritouch T, Akhtari K, Shahpasand K, Falahati M. Aluminium oxide nanoparticles induce structural changes in tau and cytotoxicity of the neuroblastoma cell line. Int J Biol Macromol. 2018;120(Pt A):1140–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sadiq R, Khan QM, Mobeen A, Hashmat AJ. In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug Chem Toxicol. 2015;38(2):152–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De A, Ghosh S, Chakrabarti M, Ghosh I, Banerjee R, Mukherjee A. Effect of low-dose exposure of aluminium oxide nanoparticles in Swiss albino mice: histopathological changes and oxidative damage. Toxicol Ind Health. 2020;36(8):567–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol. 2008;3(4):286–95.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, Collingridge GL. The role of GSK-3 in synaptic plasticity. Br J Pharmacol. 2008;153(Suppl 1):428–37.

    Article 
    CAS 

    Google Scholar
     

  • Bohrer D, do Nascimento PC, Mendonca JK, Polli VG, de Carvalho LM. Interaction of aluminium ions with some amino acids present in human blood. Amino Acids. 2004;27(1):75–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • M’Rad I, Jeljeli M, Rihane N, Hilber P, Sakly M, Amara S. Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI J. 2018;17:200–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leutgeb S, Leutgeb JK, Moser MB, Moser EI. Place cells, spatial maps and the population code for memory. Curr Opin Neurobiol. 2005;15(6):738–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gibon J, Buckley SM, Unsain N, Kaartinen V, Seguela P, Barker PA. proBDNF and p75NTR control excitability and persistent firing of cortical pyramidal neurons. J Neurosci. 2015;35(26):9741–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang N, Yan Y, Xu Y, Jin Y, Lei J, Zou X, Ran D, Zhang H, Luan S, Gu H. Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology. 2013;7(2):212–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Esvald EE, Tuvikene J, Sirp A, Patil S, Bramham CR, Timmusk T. CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons. J Neurosci. 2020;40(7):1405–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hwang IK, Yoo KY, Yoo DY, Choi JW, Lee CH, Choi JH, Yoon YS, Won MH. Time-course of changes in phosphorylated CREB in neuroblasts and BDNF in the mouse dentate gyrus at early postnatal stages. Cell Mol Neurobiol. 2011;31(5):669–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen J, Li CR, Yang H, Liu J, Zhang T, Jiao SS, Wang YJ, Xu ZQ. proBDNF attenuates hippocampal neurogenesis and induces learning and memory deficits in aged mice. Neurotox Res. 2016;29(1):47–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gibon J, Barker PA, Seguela P. Opposing presynaptic roles of BDNF and ProBDNF in the regulation of persistent activity in the entorhinal cortex. Mol Brain. 2016;9:23.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Holm MM, Nieto-Gonzalez JL, Vardya I, Vaegter CB, Nykjaer A, Jensen K. Mature BDNF, but not proBDNF, reduces excitability of fast-spiking interneurons in mouse dentate gyrus. J Neurosci. 2009;29(40):12412–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dougherty KD, Milner TA. p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. J Comp Neurol. 1999;407(1):77–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perovic M, Tesic V, Mladenovic Djordjevic A, Smiljanic K, Loncarevic-Vasiljkovic N, Ruzdijic S, Kanazir S. BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat. Age (Dordr). 2013;35(6):2057–70.

    CAS 
    Article 

    Google Scholar
     

  • Iulita MF, Do Carmo S, Ower AK, Fortress AM, Flores Aguilar L, Hanna M, Wisniewski T, Granholm AC, Buhusi M, Busciglio J, et al. Nerve growth factor metabolic dysfunction in Down’s syndrome brains. Brain. 2014;137(Pt 3):860–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull. 2021;166:172–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dwivedi Y. Involvement of brain-derived neurotrophic factor in late-life depression. Am J Geriatr Psychiatry. 2013;21(5):433–49.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fleitas C, Piñol-Ripoll G, Marfull P, Rocandio D, Ferrer I, Rampon C, Egea J, Espinet C. proBDNF is modified by advanced glycation end products in Alzheimer’s disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing. Mol Brain. 2018;11(1):68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 2020;21(7).

  • Canli EG, Ila HB, Canli M. Responses of biomarkers belonging to different metabolic systems of rats following oral administration of aluminium nanoparticle. Environ Toxicol Pharmacol. 2019;69:72–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernandes RM, Correa MG, Aragao WAB, Nascimento PC, Cartagenes SC, Rodrigues CA, Sarmiento LF, Monteiro MC, Maia C, Crespo-Lopez ME, et al. Preclinical evidences of aluminum-induced neurotoxicity in hippocampus and pre-frontal cortex of rats exposed to low doses. Ecotoxicol Environ Saf. 2020;206:111139.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abou-Zeid SM, Elkhadrawey BA, Anis A, AbuBakr HO, El-Bialy BE, Elsabbagh HS, El-Borai NB. Neuroprotective effect of sesamol against aluminum nanoparticle-induced toxicity in rats. Environ Sci Pollut Res Int. 2021;28(38):53767–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cox J, Witten IB. Striatal circuits for reward learning and decision-making. Nat Rev Neurosci. 2019;20(8):482–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu A, Yu B, Komiyama T. Plasticity in olfactory bulb circuits. Curr Opin Neurobiol. 2020;64:17–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arslanbaş E, COŞAR Z. Toxic effects of cutaneous and oral exposure to aluminum and magnesium nanoparticles on brain tissue in rats. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 2019;67(1):41–50.


    Google Scholar
     

  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 2009;6:14.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Alshatwi AA, Subbarayan PV, Ramesh E, Al-Hazzani AA, Alsaif MA, Alwarthan AA. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(1):1–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Radziun E, Dudkiewicz Wilczynska J, Ksiazek I, Nowak K, Anuszewska EL, Kunicki A, Olszyna A, Zabkowski T. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol In Vitro. 2011;25(8):1694–700.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pakrashi S, Dalai S, T CP, Trivedi S, Myneni R, Raichur AM, Chandrasekaran N, Mukherjee A. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol. 2013;132–133:34–45.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of engineered nanoparticles in the environment. Anal Chem. 2013;85(6):3036–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coulson EJ, Nykjaer A. Up-regulation of sortilin mediated by amyloid-beta and p75(NTR): safety lies in the middle course. J Neurochem. 2013;127(2):149–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Skeldal S, Matusica D, Nykjaer A, Coulson EJ. Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling?: Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). BioEssays. 2011;33(8):614–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 2005;25(22):5455–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang YZ, McNamara JO. Neuroprotective effects of reactive oxygen species mediated by BDNF-independent activation of TrkB. J Neurosci. 2012;32(44):15521–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yamagata T, Satoh T, Ishikawa Y, Nakatani A, Yamada M, Ikeuchi T, Hatanaka H. Brain-derived neurotropic factor prevents superoxide anion-induced death of PC12h cells stably expressing TrkB receptor via modulation of reactive oxygen species. Neurosci Res. 1999;35(1):9–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)