• Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6.

    PubMed 
    Article 

    Google Scholar
     

  • Dempster DW. Osteoporosis and the burden of osteoporosis-related fractures. Am J Manag Care. 2011;17(Suppl 6):S164–9.

    PubMed 

    Google Scholar
     

  • Sunyecz JA. The use of calcium and vitamin D in the management of osteoporosis. Ther Clin Risk Manag. 2008;4(4):827–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parletta N, Zarnowiecki D, Cho J, Wilson A, Bogomolova S, Villani A, et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutr Neurosci. 2019;22(7):474–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mendes MM, Sahni S. Calcium and vitamin D in the management of osteoporosis. Fifth Edition. In: Dempster, D, Cauley JA, Bouxsein ML, Cosman F, editors. Marcus and Feldman’s Osteoporosis, e.d. 2021;2(71):1665–76. Academic Press © Elsevier Inc.

  • Sahni S, Tucker KL, Kiel DP, Quach L, Casey VA, Hannan MT. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: the Framingham Offspring Study. Arch Osteoporos. 2013;8:119.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr. 2003;77(1):257–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kull M, Kallikorm R, Lember M. Impact of molecularly defined hypolactasia, self-perceived milk intolerance and milk consumption on bone mineral density in a population sample in Northern Europe. Scand J Gastroenterol. 2009;44(4):415–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McCabe LD, Martin BR, McCabe GP, Johnston CC, Weaver CM, Peacock M. Dairy intakes affect bone density in the elderly. Am J Clin Nutr. 2004;80(4):1066–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murphy S, Khaw KT, May H, Compston JE. Milk consumption and bone mineral density in middle aged and elderly women. BMJ. 1994;308(6934):939–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soroko S, Holbrook TL, Edelstein S, Barrett-Connor E. Lifetime milk consumption and bone mineral density in older women. Am J Public Health. 1994;84(8):1319–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wallace TC, Bailey RL, Lappe J, O’Brien KO, Wang DD, Sahni S, et al. Dairy intake and bone health across the lifespan: a systematic review and expert narrative. Crit Rev Food Sci Nutr. 2021;61(21):3661–707.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feskanich D, Bischoff-Ferrari HA, Frazier AL, Willett WC. Milk consumption during teenage years and risk of hip fractures in older adults. JAMA Pediatr. 2014;168(1):54–60.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr. 2003;77(2):504–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Langsetmo L, Shikany JM, Burghardt AJ, Cawthon PM, Orwoll ES, Cauley JA, et al. High dairy protein intake is associated with greater bone strength parameters at the distal radius and tibia in older men: a cross-sectional study. Osteoporos Int. 2018;29(1):69–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Durosier-Izart C, Biver E, Merminod F, van Rietbergen B, Chevalley T, Herrmann FR, et al. Peripheral skeleton bone strength is positively correlated with total and dairy protein intakes in healthy postmenopausal women. Am J Clin Nutr. 2017;105:513–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biver E, Durosier-Izart C, Merminod F, Chevalley T, van Rietbergen B, Ferrari SL, et al. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women. Osteoporos Int. 2018;29(8):1771–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harvey NC, Glüer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302–12.

    PubMed 
    Article 

    Google Scholar
     

  • Sato Y, Iki M, Fujita Y, Tamaki J, Kouda K, Yura A, et al. Greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in a population of elderly Japanese men with relatively low dietary calcium intake: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int. 2015;26(5):1585–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families The Framingham offspring study. Am J Epidemiol. 1979;110(3):281–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ascherio A, Stampfer MJ, Coldh’z A, Rimm E, Willett W. Correlations of vitamin A and E intakes with the plasma concentrations of carotenoids and tocopherols among American men and women. J Nutr. 1992;122:1792–801.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jacques P, Sulsky S, Sadowski J, Phillips J, Rush D, Willett W. Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am J Clin Nutr. 1993;57:182–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135:1114–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang H, Fox CS, Troy LM, McKeown NM, Jacques PF. Longitudinal association of dairy consumption with the changes in blood pressure and the risk of incident hypertension: the Framingham Heart Study. Br J Nutr. 2015;114(11):1887–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shevroja E, Aubry-Rozier B, Hans G, Gonzalez- Rodriguez E, Stoll D, Lamy O, et al. Clinical Performance of the Updated Trabecular Bone Score (TBS) Algorithm, which accounts for the soft tissue thickness: The OsteoLaus Study. J Bone Miner Res. 2019;34(12):2229–37.

    PubMed 
    Article 

    Google Scholar
     

  • Cannarella R, Barbagallo F, Condorelli RA, Aversa A, La Vignera S, Calogero AE. Osteoporosis from an endocrine perspective: the role of hormonal changes in the elderly. J Clin Med. 2019;8(10):1564.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kannel WB, Belanger A, D’Agostino R, Israel I. Physical activity and physical demand on the job and risk of cardiovascular disease and death: the Framingham Study. Am Heart J. 1986;112:820–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anderson KB, Holloway-Kew KL, Hans D, Kotowicz MA, Hyde NK, Pasco JA. Physical and lifestyle factors associated with trabecular bone score values. Arch Osteoporos. 2020;15(1):177.

    PubMed 
    Article 

    Google Scholar
     

  • Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65:1220–8.

    Article 

    Google Scholar
     

  • Bazzocchi A, Ponti F, Diano D, Amadori M, Albisinni U, Battista G, et al. Trabecular bone score in healthy ageing. Br J Radiol. 2015;88(1052):20140865.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thorpe MP, Jacobson EH, Layman DK, He X, Kris-Etherton PM, Evans EM. A diet high in protein, dairy, and calcium attenuates bone loss over twelve months of weight loss and maintenance relative to a conventional high-carbohydrate diet in adults. J Nutr. 2008;138:1096–100.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moschonis G, Manios Y. Skeletal site-dependent response of bone mineral density and quantitative ultrasound parameters following a 12-month dietary intervention using dairy products fortified with calcium and vitamin D: the Postmenopausal Health Study. Br J Nutr. 2006;96:1140–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McCabe LD, Martin BR, McCabe GP, Johnston CC, Weaver CM, Peacock M. Dairy intakes affect bone density in the elderly. Am J Clin Nutr. 2004;80:1066–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sato Y, Iki M, Fujita Y, Tamaki J, Kouda K, Yura A, et al. Greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in a population of elderly Japanese men with relatively low dietary calcium intake: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int. 2015;26:1585–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sahni S, Mangano KM, Kiel DP, Tucker KL, Hannan MT. Dairy intake is protective against bone loss in older vitamin D supplement users: The Framingham study. J Nutr. 2017;147:645–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res. 1995;10:1068–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murphy S, Khaw K-T, May H, Compston JE. Milk consumption and bone mineral density in middle aged and elderly women. BMJ. 1994;308:939–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soroko S, Holbrook TL, Edelstein S, Barrett-Connor E. Lifetime milk consumption and bone mineral density in older women. Am J Public Health. 1994;84:1319–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berger C, Langsetmo L, Joseph L, Hanley DA, Davison KS, Josse R, et al. Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ. 2008;178(13):1660–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N. Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int. 2013;24(11):2837–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi Y, Zhan Y, Chen Y, Jiang Y. Effects of dairy products on bone mineral density in healthy postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos. 2020;15(1):48.

    PubMed 
    Article 

    Google Scholar
     

  • Bousson V, Bergot C, Sutter B, Levitz B. Cortet the Scientific Committee of the, Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporosis Int. 2012;23(5):1489–501.

    CAS 
    Article 

    Google Scholar
     

  • Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30.

    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)