• Boo YC. p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants. 2019;8:275.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pei K, Ou J, Huang J, Ou S. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric. 2016;96:2952–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pragasam SJ, Venkatesan V, Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36:169–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawaguchi H, Katsuyama Y, Danyao D, Kahar P, Nakamura-Tsuruta S, Teramura H, Wakai K, Yoshihara K, Minami H, Ogino C, et al. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Appl Microbiol Biotechnol. 2017;101:5279–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fowler ZL, Koffas MA. Biosynthesis and biotechnological production of flavanones: current state and perspectives. Appl Microbiol Biotechnol. 2009;83:799–808.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shrestha A, Pandey RP, Sohng JK. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives. Appl Microbiol Biotechnol. 2019;103:2959–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Olthof MR, Hollman PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr. 2001;131:66–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rajendra Prasad N, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem. 2011;349:11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chao PC, Hsu CC, Yin MC. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab. 2009;6:33.

    Article 
    CAS 

    Google Scholar
     

  • Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, et al. Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother. 2018;97:67–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry. 2003;62:121–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murtaza G, Karim S, Akram MR, Khan SA, Azhar S, Mumtaz A, Bin Asad MH. Caffeic acid phenethyl ester and therapeutic potentials. Biomed Res Int. 2014;2014: 145342.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng. 2015;31:181–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Magnani C, Isaac VLB, Correa MA, Salgado HRN. Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods. 2014;6:3203–10.

    CAS 
    Article 

    Google Scholar
     

  • Palma M, Barbero GF, Piñeiro Z, Liazid A, Barroso CG, Rostagno MA, Prado JM, Meireles MAA: CHAPTER 2 Extraction of Natural Products: Principles and Fundamental Aspects. In Natural Product Extraction: Principles and Applications. The Royal Society of Chemistry; 2013: 58-88

  • Liu Q, Liu Y, Chen Y, Nielsen J. Current state of aromatics production using yeast: achievements and challenges. Curr Opin Biotechnol. 2020;65:65–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Braga A, Ferreira P, Oliveira J, Rocha I, Faria N. Heterologous production of resveratrol in bacterial hosts: current status and perspectives. World J Microbiol Biotechnol. 2018;34:122.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gottardi M, Reifenrath M, Boles E, Tripp J. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. FEMS Yeast Res. 2017. https://doi.org/10.1093/femsyr/fox035.

    Article 
    PubMed 

    Google Scholar
     

  • Krömer JO, Nunez-Bernal D, Averesch NJ, Hampe J, Varela J, Varela C. Production of aromatics in Saccharomyces cerevisiae—a feasibility study. J Biotechnol. 2013;163:184–93.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liu X, Ding W, Jiang H. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microb Cell Fact. 2017;16:125.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact. 2014;13:126.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai M, Wu Y, Qi H, He J, Wu Z, Xu H, Qiao M. Improving the level of the tyrosine biosynthesis pathway in Saccharomyces cerevisiae through HTZ1 knockout and atmospheric and room temperature plasma (ARTP) mutagenesis. ACS Synth Biol. 2021;10:49–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Mao J, Liu Q, Song X, Wu Y, Cai M, Xu H, Qiao M. De novo biosynthesis of caffeic acid from glucose by engineered Saccharomyces cerevisiae. ACS Synth Biol. 2020;9:756–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun C, Zhang S, Xin F, Shanmugam S, Wu YR. Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production. Biotechnol Biofuels. 2018;11:42.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jiang Y, Liu J, Jiang W, Yang Y, Yang S. Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv. 2015;33:1493–501.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Z, Inokuma K, Ho SH, den Haan R, van Zyl WH, Hasunuma T, Kondo A. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae. Biotechnol Bioeng. 2017;114:1201–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gaida SM, Liedtke A, Jentges AH, Engels B, Jennewein S. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact. 2016;15:6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chu X, Awasthi MK, Liu Y, Cheng Q, Qu J, Sun Y. Studies on the degradation of corn straw by combined bacterial cultures. Bioresour Technol. 2021;320: 124174.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song X, Liu Q, Mao J, Wu Y, Li Y, Gao K, Zhang X, Bai Y, Xu H, Qiao M. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae. FEMS Yeast Res. 2017. https://doi.org/10.1093/femsyr/fox064.

    Article 
    PubMed 

    Google Scholar
     

  • Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface. 2014;11:20140065.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Andrews JS, Rolfe SA, Huang WE, Scholes JD, Banwart SA. Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species. Environ Microbiol. 2010;12:2496–507.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wintermute EH, Silver PA. Dynamics in the mixed microbial concourse. Genes Dev. 2010;24:2603–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA. Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc. 2009;131:6508–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakayama S, Kiyoshi K, Kadokura T, Nakazato A. Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1–4. Appl Environ Microbiol. 2011;77:6470–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA. 2013;110:14592–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Song X, Li Y, Wu Y, Cai M, Liu Q, Gao K, Zhang X, Bai Y, Xu H, Qiao M. Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae. FEMS Yeast Res. 2018. https://doi.org/10.1093/femsyr/foy090.

    Article 
    PubMed 

    Google Scholar
     

  • Liu L, Liu H, Zhang W, Yao M, Li B, Liu D, Yuan Y. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering. 2019;5:287–95.

    CAS 
    Article 

    Google Scholar
     

  • Zhou P, Yue C, Shen B, Du Y, Xu N, Ye L. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid. Appl Microbiol Biotechnol. 2021;105:5809–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Z, Wang X, Zhang H. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metab Eng. 2019;54:1–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bader J, Mast-Gerlach E, Popović MK, Bajpai R, Stahl U. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol. 2010;109:371–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ariana M, Hamedi J. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium. J Biotechnol. 2017;256:21–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reis VR, Bassi APG, Cerri BC, Almeida AR, Carvalho IGB, Bastos RG, Ceccato-Antonini SR. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. AMB Express. 2018;8:23.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu C, Hu B, Liu Y, Chen S. Stimulation of Nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2006;131:751–61.

    PubMed 
    Article 

    Google Scholar
     

  • Jiang C, Chen X, Lei S, Shao D, Zhu J, Liu Y, Shi J. Fungal spores promote the glycerol production of Saccharomyces cerevisiae by upregulating the oxidative balance pathway. J Agric Food Chem. 2018;66:3188–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yuan SF, Yi X, Johnston TG, Alper HS. De novo resveratrol production through modular engineering of an Escherichia coliSaccharomyces cerevisiae co-culture. Microb Cell Fact. 2020;19:143.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, et al. Domestication and sivergence of Saccharomyces cerevisiae beer yeasts. Cell. 2016;166:1397-1410.e1316.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schempp FM, Drummond L, Buchhaupt M, Schrader J. Microbial cell factories for the production of terpenoid flavor and fragrance compounds. J Agric Food Chem. 2018;66:2247–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levisson M, Patinios C, Hein S, de Groot PA, Daran JM, Hall RD, Martens S, Beekwilder J. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact. 2018;17:103.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Partow S, Siewers V, Bjørn S, Nielsen J, Maury J. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast. 2010;27:955–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao J, Liu Q, Li Y, Yang J, Song X, Liu X, Xu H, Qiao M. A high-throughput method for screening of L-tyrosine high-yield strains by Saccharomyces cerevisiae. J Gen Appl Microbiol. 2018;64:198–201.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao J, Liu Q, Song X, Wang H, Feng H, Xu H, Qiao M. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae. Biotechnol Lett. 2017;39:977–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)