• Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5:56.

    Article 

    Google Scholar
     

  • Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118:535–46.

    CAS 
    Article 

    Google Scholar
     

  • Zhu F, Zuo L, Hu R, Wang J, Yang Z, Qi X, et al. A ten-genes-based diagnostic signature for atherosclerosis. BMC Cardiovasc Disord. 2021;21:513.

    CAS 
    Article 

    Google Scholar
     

  • Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

    Article 

    Google Scholar
     

  • Lechner K, von Schacky C, McKenzie AL, Worm N, Nixdorff U, Lechner B, et al. Lifestyle factors and high-risk atherosclerosis: pathways and mechanisms beyond traditional risk factors. Eur J Prev Cardiol. 2020;27:394–406.

    Article 

    Google Scholar
     

  • Yao BC, Meng LB, Hao ML, Zhang YM, Gong T, Guo ZG. Chronic stress: a critical risk factor for atherosclerosis. J Int Med Res. 2019;47:1429–40.

    Article 

    Google Scholar
     

  • Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.

    CAS 
    Article 

    Google Scholar
     

  • Cremer S, Michalik KM, Fischer A, Pfisterer L, Jaé N, Winter C, et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation. 2019;139:1320–34.

    CAS 
    Article 

    Google Scholar
     

  • Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116:1143–56.

    CAS 
    Article 

    Google Scholar
     

  • Huang Y, Wang L, Mao Y, Nan G, Long Noncoding. RNA-H19 contributes to atherosclerosis and induces ischemic stroke via the upregulation of acid phosphatase 5. Front Neurol. 2019;10:32.

    Article 

    Google Scholar
     

  • Zhang Y, Wang H, Xia Y. The expression of miR-211-5p in atherosclerosis and its influence on diagnosis and prognosis. BMC Cardiovasc Disord. 2021;21:371.

    Article 

    Google Scholar
     

  • Xu Y, Zhao L, Liu H, Sun B, Zhao X. Diagnostic value of miR-637 in patients with atherosclerosis and its predictive significance for the future cardiovascular events. Vascular. 2021;29:704–10.

    CAS 
    Article 

    Google Scholar
     

  • Teng P, Liu Y, Zhang M, Ji W. Diagnostic and prognostic significance of serum miR-18a-5p in patients with atherosclerosis. Clin Appl Thromb Hemost. 2021;27:10760296211050642.

    CAS 
    Article 

    Google Scholar
     

  • Tang TT, Wang BQ. Clinical significance of lncRNA-AWPPH in coronary artery diseases. Eur Rev Med Pharmacol Sci. 2020;24:11747–51.

    PubMed 

    Google Scholar
     

  • Qi H, Shen J, Zhou W. Up-regulation of long non-coding RNA THRIL in coronary heart disease: prediction for disease risk, correlation with inflammation, coronary artery stenosis, and major adverse cardiovascular events. J Clin Lab Anal. 2020;34:e23196.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu S, Sun J. lncRNA-MALAT1 expression in patients with coronary atherosclerosis and its predictive value for in-stent restenosis. Exp Ther Med. 2020;20:129.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang G, Lin C. Long noncoding RNA SOX2-OT exacerbates hypoxia-induced cardiomyocytes injury by regulating miR-27a-3p/TGFβR1 axis. Cardiovasc Ther. 2020;2020:2016259.

    Article 

    Google Scholar
     

  • Hicks KA, Tcheng JE, Bozkurt B, Chaitman BR, Cutlip DE, Farb A, et al. 2014 ACC/AHA key data elements and definitions for cardiovascular endpoint events in clinical trials: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Cardiovascular Endpoints Data Standards). Circulation. 2015;132:302–61.

    Article 

    Google Scholar
     

  • Naylor AR, Ricco JB, de Borst GJ, Debus S, de Haro J, Halliday A, et al. Editor’s choice—management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2018;55:3–81.

    CAS 
    Article 

    Google Scholar
     

  • Jashari F, Ibrahimi P, Bajraktari G, Grönlund C, Wester P, Henein MY. Carotid plaque echogenicity predicts cerebrovascular symptoms: a systematic review and meta-analysis. Eur J Neurol. 2016;23:1241–7.

    CAS 
    Article 

    Google Scholar
     

  • Baradaran H, Gupta A. Brain imaging biomarkers of carotid artery disease. Ann Transl Med. 2020;8:1277.

    CAS 
    Article 

    Google Scholar
     

  • Saghaeian Jazi M, Samaei NM, Ghanei M, Shadmehr MB, Mowla SJ. Overexpression of the non-coding SOX2OT variants 4 and 7 in lung tumors suggests an oncogenic role in lung cancer. Tumour Biol. 2016;37:10329–38.

    CAS 
    Article 

    Google Scholar
     

  • Farhangian P, Jahandoost S, Mowla SJ, Khalili M. Differential expression of long non-coding RNA SOX2OT in gastric adenocarcinoma. Cancer Biomark. 2018;23:221–5.

    CAS 
    Article 

    Google Scholar
     

  • Tian W, Jiang C, Huang Z, Xu D, Zheng S. Comprehensive analysis of dysregulated lncRNAs, miRNAs and mRNAs with associated ceRNA network in esophageal squamous cell carcinoma. Gene. 2019;696:206–18.

    CAS 
    Article 

    Google Scholar
     

  • Li PY, Wang P, Gao SG, Dong DY. Long noncoding RNA SOX2-OT: regulations, functions, and roles on mental illnesses, cancers, and diabetic complications. Biomed Res Int. 2020;2020:2901589.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greco S, Zaccagnini G, Perfetti A, Fuschi P, Valaperta R, Voellenkle C, et al. Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med. 2016;14:183.

    Article 

    Google Scholar
     

  • Quan W, Hu PF, Zhao X, Lianhua CG, Batu BR. Expression level of lncRNA PVT1 in serum of patients with coronary atherosclerosis disease and its clinical significance. Eur Rev Med Pharmacol Sci. 2020;24:6333–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Liang J, Xu J, Wang X, Zhang X, Wang W, et al. Circulating exosomes and exosomal lncRNA HIF1A-AS1 in atherosclerosis. Int J Clin Exp Pathol. 2017;10:8383–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)