• Redondo-Useros N, Nova E, González-Zancada N, Díaz LE, Gómez-Martínez S, Marcos A. Microbiota and lifestyle: a special focus on diet. Nutrients. 2020;12:1776.

    CAS 
    Article 

    Google Scholar
     

  • Dorelli B, Gallè F, De Vito C, Duranti G, Iachini M, Zaccarin M, et al. Can physical activity influence human gut microbiota composition independently of diet? A systematic review. Nutrients. 2021;13:1890.

    CAS 
    Article 

    Google Scholar
     

  • Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972.

    Article 

    Google Scholar
     

  • Šoltys K, Lendvorský L, Hric I, Baranovičová E, Penesová A, Mikula I, et al. Strenuous physical training, physical fitness, body composition and bacteroides to prevotella ratio in the gut of elderly athletes. Front Physiol. 2021;12: 670989.

    Article 

    Google Scholar
     

  • Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1890.

    Article 

    Google Scholar
     

  • Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020;17:24.

    Article 

    Google Scholar
     

  • Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016;310:E982–93.

    Article 

    Google Scholar
     

  • Wang G, Zhou H, Zhang L, Li R, Luo L, Yu Z, et al. Effects of high-intensity interval training on gut microbiota profiles in 12 months’ old ICR mice. J Physiol Biochem Spain. 2020;76:539–48.

    CAS 
    Article 

    Google Scholar
     

  • Warbeck C, Dowd AJ, Kronlund L, Parmar C, Daun JT, Wytsma-Fisher K, et al. Feasibility and effects on the gut microbiota of a 12-week high-intensity interval training plus lifestyle education intervention on inactive adults with celiac disease. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2021;46:325–36.

    Article 

    Google Scholar
     

  • Donati Zeppa S, Amatori S, Sisti D, Gervasi M, Agostini D, Piccoli G, et al. Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students. J Int Soc Sports Nutr. 2021;18:74. https://doi.org/10.1186/s12970-021-00471-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill CA, Poretsky R. Comparative analysis of gut microbiota following changes in training volume among swimmers. Int J Sports Med. 2020;41:292–9.

    Article 

    Google Scholar
     

  • Rettedal EA, Cree JME, Adams SE, MacRae C, Skidmore PM, Cameron-Smith D, et al. Short-term high intensity interval training (HIIT) exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Exp Physiol. 2020;105:1268–79.

    CAS 
    Article 

    Google Scholar
     

  • Hric I, Ugrayová S, Penesová A, Rádiková Ž, Kubáňová L, Šardzíková S, et al. The efficacy of short-term weight loss programs and consumption of natural probiotic bryndza cheese on gut microbiota composition in women. Nutrients. 2021;13:1753.

    CAS 
    Article 

    Google Scholar
     

  • Grosicki GJ, Durk RP, Bagley JR. Rapid gut microbiome changes in a world-class ultramarathon runner. Physiol Rep. 2019;7: e14313.

    Article 

    Google Scholar
     

  • Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol. 2018;9:765.

    Article 

    Google Scholar
     

  • George Kerry R, Patra JK, Gouda S, Park Y, Shin H-S, Das G. Benefaction of probiotics for human health: a review. J Food Drug Anal. 2018;26:927–39.

    CAS 
    Article 

    Google Scholar
     

  • Mathur H, Beresford TP, Cotter PD. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients. 2020;12:1679.

    CAS 
    Article 

    Google Scholar
     

  • Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr. 2019;59:506–27.

    Article 

    Google Scholar
     

  • Valero-Cases E, Cerdá-Bernad D, Pastor J-J, Frutos M-J. Non-dairy fermented beverages as potential carriers to ensure probiotics, prebiotics, and bioactive compounds arrival to the gut and their health benefits. Nutrients. 2020;12:1666.

    CAS 
    Article 

    Google Scholar
     

  • Hellard P, Avalos-Fernandes M, Lefort G, Pla R, Mujika I, Toussaint J-F, et al. Elite swimmers’ training patterns in the 25 weeks prior to their season’s best performances: insights into periodization from a 20-years cohort. Front Physiol. 2019;10:363.

    Article 

    Google Scholar
     

  • Kačániová M, Terentjeva M, Kunová S, Haščík P, Kowalczewski PŁ, Štefániková J. Diversity of microbiota in Slovak summer ewes’ cheese “Bryndza.” Open life Sci. 2021;16(1):277–86. https://doi.org/10.1515/biol-2021-0038.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews S. FastQC A Quality control tool for high throughput sequence data. Babraham Bioinfo. 2018. p 3–5. https://github.com/s-andrews/FastQC

  • R Core Team [Internet]. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. 2020. http://www.r-project.org/index.html

  • Kassambara A. rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.0 [Internet]. https://cran.r-project.org/web/packages/rstatix/index.html. 2021. https://cran.r-project.org/web/packages/rstatix/index.html

  • Kassambara A. ggpubr: “ggplot2” based publication ready plots. R package version 0.4.0.999. https://rpkgs.datanovia.com/ggpubr/. 2020.

  • Ishwaran H, Kogalur UB. Fast unified random forests for survival, regression, and classification (RF-SRC). 2020.

  • Dhand NK, Khatkar MS. An online statistical calculator. Sample size calculator for comparing two paired means. 2014. http://statulator.com/SampleSize/ss2PM.html.

  • Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–70.

    CAS 
    Article 

    Google Scholar
     

  • Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4:42.

    Article 

    Google Scholar
     

  • Keohane DM, Woods T, O’Connor P, Underwood S, Cronin O, Whiston R, et al. Four men in a boat: ultra-endurance exercise alters the gut microbiome. J Sci Med Sport. 2019;22:1059–64.

    Article 

    Google Scholar
     

  • Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR, Kruger RH, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.

    Article 

    Google Scholar
     

  • Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut England. 2018;67:625–33.

    CAS 

    Google Scholar
     

  • Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50:747–57.

    Article 

    Google Scholar
     

  • Resende AS, Leite GSF, Lancha Junior AH. Changes in the gut bacteria composition of healthy men with the same nutritional profile undergoing 10-week aerobic exercise training: a randomized controlled trial. Nutrients. 2021;13:2839.

    CAS 
    Article 

    Google Scholar
     

  • Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab United States. 2016;24:256–68.

    CAS 
    Article 

    Google Scholar
     

  • Dearlove DJ, Harrison OK, Hodson L, Jefferson A, Clarke K, Cox PJ. The effect of blood ketone concentration and exercise intensity on exogenous ketone oxidation rates in athletes. Med Sci Sports Exerc. 2021;53:505–16.

    CAS 
    Article 

    Google Scholar
     

  • O’Malley T, Myette-Cote E, Durrer C, Little JP. Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males. Appl Physiol Nutr Metab Canada. 2017;42:1031–5.

    Article 

    Google Scholar
     

  • Shaw DM, Merien F, Braakhuis A, Plews D, Laursen P, Dulson DK. The effect of 1,3-butanediol on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2019;29:466–73.

    CAS 
    Article 

    Google Scholar
     

  • Evans M, Patchett E, Nally R, Kearns R, Larney M, Egan B. Effect of acute ingestion of β-hydroxybutyrate salts on the response to graded exercise in trained cyclists. Eur J Sport Sci England. 2018;18:376–86.

    Article 

    Google Scholar
     

  • Poffé C, Wyns F, Ramaekers M, Hespel P. Exogenous ketosis impairs 30-min time-trial performance independent of bicarbonate supplementation. Med Sci Sports Exerc. 2021;53:1068–78.

    Article 

    Google Scholar
     

  • Castro A, Duft RG, Ferreira MLV, de Andrade ALL, Gáspari AF, Silva LM, et al. Association of skeletal muscle and serum metabolites with maximum power output gains in response to continuous endurance or high-intensity interval training programs: the TIMES study—a randomized controlled trial. PLoS ONE. 2019;14: e0212115.

    CAS 
    Article 

    Google Scholar
     

  • Pangallo D, Saková N, Koreňová J, Puškárová A, Kraková L, Valík L, et al. Microbial diversity and dynamics during the production of May bryndza cheese. Int J Food Microbiol. 2014;170:38–43.

    CAS 
    Article 

    Google Scholar
     

  • Soltys K, Stuchlikova M, Hlavaty T, Gaalova B, Budis J, Gazdarica J, et al. Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients. Sci Rep. 2020;10:6024.

    CAS 
    Article 

    Google Scholar
     

  • Kanhere M, He J, Chassaing B, Ziegler TR, Alvarez JA, Ivie EA, et al. Bolus weekly vitamin D3 supplementation impacts gut and airway microbiota in adults with cystic fibrosis: a double-blind, randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2018;103:564–74.

    Article 

    Google Scholar
     

  • Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, et al. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol. 2018;175:125–35.

    CAS 
    Article 

    Google Scholar
     

  • Archer E, Marlow ML, Lavie CJ. Controversy and debate: memory-based methods paper 1: the fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J Clin Epidemiol. 2018;104:113–24.

    Article 

    Google Scholar
     

  • Martín-Calvo N, Martínez-González MÁ. Controversy and debate: memory-based dietary assessment methods paper 2. J Clin Epidemiol. 2018;104:125–9.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)