Note that the space (W:=W^{m_{1},p}(V)times W^{m_{2},q}(V)) with the norm (|(u,v)|=|u|_{W^{m_{1},p}(V)}+|v|_{W^{m_{2},q}(V)}) is a finite-dimensional Banach space. Consider the functional (varphi :Wto mathbb{R}) defined as

$$ begin{aligned}[b] varphi (u,v)={}&frac{1}{p} int _{V}bigl( biglvert nabla ^{m_{1}}u bigrvert ^{p}+h_{1}(x) vert u vert ^{p}bigr),dmu +frac{1}{q} int _{V}bigl( biglvert nabla ^{m_{2}}v bigrvert ^{q}+h_{2}(x) vert v vert ^{q}bigr),dmu \ &{}- int _{V} F(x,u,v),dmu . end{aligned} $$

(3.1)

Then (varphi in C^{1}(W,mathbb{R})), and

$$begin{aligned} bigllangle varphi ‘(u,v),(phi _{1},phi _{2})bigrrangle =& int _{V} bigl[(text{pounds}_{m_{1},p}u,phi _{1})+bigl(h_{1}(x) vert u vert ^{p-2}u,phi _{1}bigr)-bigl( F_{u}(x,u,v), phi _{1}bigr) bigr],dmu \ &{}+ int _{V} bigl[(text{pounds}_{m_{2},q}v,phi _{2})+bigl(h_{2}(x) vert v vert ^{q-2}v, phi _{2}bigr)-bigl(F_{v}(x,u,v), phi _{2}bigr) bigr],dmu end{aligned}$$

(3.2)

for all ((u,v),(phi _{1},phi _{2})in W). Then ((u,v)in W) is a critical point of φ if and only if

$$ int _{V} bigl(bigl(text{pounds}_{m_{1},p}u+h_{1}(x) vert u vert ^{p-2}u-F_{u}(x,u,v)bigr), phi _{1} bigr),dmu =0 $$

and

$$ int _{V} bigl(bigl(text{pounds}_{m_{2},q}v+h_{2}(x) vert v vert ^{q-2}v-F_{v}(x,u,v)bigr), phi _{2} bigr),dmu =0. $$

By the arbitrariness of (phi _{1}) and (phi _{2}) we conclude that

$$begin{aligned}& text{pounds}_{m_{1},p}u+h_{1}(x) vert u vert ^{p-2}u=F_{u}(x,u,v), \& text{pounds}_{m_{2},q}v+h_{2}(x) vert v vert ^{q-2}v=F_{v}(x,u,v). end{aligned}$$

Thus the problem of finding the solutions of system (1.1) is reduced to finding the critical points of the functional φ on W.

Lemma 3.1

Assume that ((F_{4})) holds. Then the functional φ satisfies condition ((C)), that is, ({(u_{k},v_{k})}) has a convergent subsequence in W whenever (varphi (u_{k},v_{k})) is bounded and (|varphi ‘(u_{k},v_{k})|times (1+| (u _{k},v_{k})|)rightarrow 0) as (krightarrow infty ).

Proof

Let ({(u_{k},v_{k})}) be a sequence in W such that (varphi (u_{k},v_{k})) is bounded and (|varphi ‘(u_{k},v_{k})|(1+|( u_{k},v_{k})|)rightarrow 0) as (krightarrow infty ). Then there exists a positive constant L such that

$$ biglvert varphi (u_{k},v_{k}) bigrvert leq L, biglVert varphi ‘(u_{k},v_{k}) bigrVert bigl(1+ biglVert (u_{k},v_{k}) bigrVert bigr)leq L $$

for every (kin mathbb{N}). By ((F_{4})),there are constants (C_{1}>0) and (delta _{1}>0) such that

$$ F_{t}(x,t,s)t+F_{s}(x,t,s)s-max {p,q}F(x,t,s)geq C_{1}bigl( vert t vert ^{ gamma _{1}}+ vert s vert ^{gamma _{2}}bigr)>0 $$

for all (|(t,s)|>delta _{1}) and (xin V). Therefore

$$ F_{t}(x,t,s)t+F_{s}(x,t,s)s-max {p,q} F(x,t,s) geq C_{1}bigl( vert t vert ^{ gamma _{1}}+ vert s vert ^{gamma _{2}}bigr)-C_{2} $$

for all ((t, s)in mathbb{R}^{2}) and (xin V), where

$$begin{aligned} C_{2} =& C_{1}max bigl{ vert t vert ^{gamma _{1}}+ vert s vert ^{gamma _{2}}mid biglvert (t,s) bigrvert le delta _{1} bigr} \ &{}+max bigl{ F_{t}(x,t,s)t+F_{s}(x,t,s)s- max {p,q} F(x,t,s)mid biglvert (t,s) bigrvert le delta _{1} bigr} . end{aligned}$$

Then for all large k, we have

$$begin{aligned}& bigl(max {p,q}+1bigr)L \& quad geq max {p,q}varphi (u_{k},v_{k})-bigl( varphi ‘(u_{k},v_{k}),(u_{k},v_{k}) bigr) \& quad = max {p,q} biggl[frac{1}{p} int _{V}bigl( biglvert nabla ^{m_{1}}u_{k} bigrvert ^{p}+h_{1}(x) vert u_{k} vert ^{p}bigr),dmu \& qquad {}+frac{1}{q} int _{V}bigl( biglvert nabla ^{m_{2}}v_{k} bigrvert ^{q}+h_{2}(x) vert v_{k} vert ^{q}bigr),dmu – int _{V} F(x,u_{k},v_{k}),dmu biggr] \& qquad {}- int _{V}( text{pounds}_{m_{1},p}u_{k},u_{k}),dmu – int _{V}h_{1}(x) vert u_{k} vert ^{p},dmu – int _{V}(text{pounds}_{m_{2},q}v_{k},v_{k}),dmu \& qquad {} – int _{V}h_{2}(x) vert v_{k} vert ^{p},dmu + int _{V}F_{u_{k}}(x,u_{k},v_{k})u_{k},dmu + int _{V}F_{v_{k}}(x,u_{k},v_{k})v_{k},dmu . end{aligned}$$

(3.3)

When (max {p,q}=p),

$$begin{aligned} (p+1)L geq & biggl(frac{p}{q}-1 biggr) int _{V}bigl( biglvert nabla ^{m_{2}}v_{k} bigrvert ^{q}+h_{2}(x) vert v_{k} vert ^{q}bigr),dmu \ & {}+ int _{V}bigl[bigl(F_{u_{k}}(x,u_{k},v_{k}),u_{k} bigr)+bigl(F_{v_{k}}(x,u_{k},v_{k}),v_{k} bigr)-pF(x,u_{k},v_{k})bigr],dmu \ geq & biggl(frac{p}{q}-1 biggr) int _{V}bigl( biglvert nabla ^{m_{2}}v_{k} bigrvert ^{q}+h_{2}(x) vert v_{k} vert ^{q}bigr),dmu \ &{}+ int _{V} C_{1}bigl( vert u_{k} vert ^{gamma _{1}}+ vert v_{k} vert ^{gamma _{2}}bigr),dmu -C_{2}sum _{xin V}mu (x) \ = & biggl(frac{p}{q}-1 biggr) Vert v_{k} Vert ^{q}_{W^{m_{2},q}(V)}+C_{1} int _{V}bigl( vert u_{k} vert ^{gamma _{1}}+ vert v_{k} vert ^{gamma _{2}}bigr),dmu -C_{2} sum_{xin V}mu (x). end{aligned}$$

Therefore (|v_{k}|_{W^{m_{2},q}(V)}), (|u_{k}|_{L^{gamma _{1}}(V)}), and (| v_{k}|_{L^{gamma _{2}}(V)}) are bounded. Since ((W,|cdot |)) is a finite-dimensional space, there exist positive constants (D_{1}) and (D_{2}) such that

$$ Vert u_{k} Vert _{W^{m_{1},p}(V)}leq D_{1} Vert u_{k} Vert _{L^{gamma _{1}}(V)},qquad Vert v_{k} Vert _{W^{m_{2},q}(V)}leq D_{2} Vert v_{k} Vert _{L^{gamma _{2}}(V)}. $$

(3.4)

Thus (|u_{k}|_{W^{m_{1},p}(V)}) and (|v_{k}|_{W^{m_{2},q}(V)}) are bounded. So ({(u_{k},v_{k})}) is bounded in W. Similarly, when (max {p,q}=q), we can also prove that ({(u_{k},v_{k})}) is bounded in W. To sum up, ({(u_{k},v_{k})}) is bounded in W. Since W is of finite dimension, there is a convergent subsequence of ({(u_{k},v_{k})}). Hence φ satisfies the ((C))-condition. □

Lemma 3.2

There exists a constant (rho >0) such that (varphi |_{partial B_{rho}(0)}> 0 ), where (B_{rho}={(u,v)in W:|(u,v)|_{W}<rho }).

Proof

By ((F_{2})) there are (0< C_{4}<min {frac{1}{pK_{1}^{P}},frac{1}{qK_{2}^{q}} }) and a positive constant (delta _{2}< C_{3}), where (C_{3}=max {frac{1}{mu _{min} h_{1,min}}, frac{1}{mu _{min} h_{2,min}} }), such that

$$ biglvert F(x,t,s) bigrvert leq C_{4} bigl( vert t vert ^{p}+ vert s vert ^{q} bigr) $$

(3.5)

for all (|(t,s)|leq delta _{2}). By Lemma 2.4 we have

$$ Vert u Vert _{L^{p}(V)}leq K_{1} Vert u Vert _{W^{m_{1},p}(V)},qquad Vert v Vert _{L^{q}(V)}leq K_{2} Vert v Vert _{W^{m_{2},q}(V)}, $$

(3.6)

where (K_{1}), (K_{2}) is defined in ((F_{2})). For every ((u,v)in W) with (|(u,v)|=rho =delta _{2} C_{3}^{-1}<1), by Lemma 2.3 we have

$$ biglVert (u,v) bigrVert _{infty}le Vert u Vert _{infty}+ Vert v Vert _{infty}le C_{3} bigl( Vert u Vert _{W^{m_{1},p}(V)}+ Vert v Vert _{W^{m_{2},q}(V)} bigr)=delta _{2}. $$

Then by (3.5) and (3.6), for all ((u,v)in W) with (|(u,v)|=rho ), we have

$$begin{aligned}& varphi (u,v) \& quad = frac{1}{p} int _{V}bigl( biglvert nabla ^{m_{1}}u bigrvert ^{p}+h_{1}(x) vert u vert ^{p}bigr),dmu +frac{1}{q} int _{V}bigl( biglvert nabla ^{m_{2}}v bigrvert ^{q}+h_{2}(x) vert v vert ^{q}bigr),dmu – int _{V} F(x,u,v),dmu \& quad geq frac{1}{p} int _{V}bigl( biglvert nabla ^{m_{1}}u bigrvert ^{p}+h_{1}(x) vert u vert ^{p}bigr),dmu +frac{1}{q} int _{V}bigl( biglvert nabla ^{m_{2}}v bigrvert ^{q}+h_{2}(x) vert v vert ^{q}bigr),dmu \& qquad {} -C_{4} int _{V}bigl( vert u vert ^{p}+ vert v vert ^{q}bigr),dmu \& quad geq biggl(frac{1}{p}-K_{1}^{p}C_{4} biggr) int _{V}bigl( biglvert nabla ^{m_{1}}u bigrvert ^{p}+h_{1}(x) vert u vert ^{p}bigr),dmu \& qquad {}+ biggl(frac{1}{q}-K_{2}^{q}C_{4} biggr) int _{V}bigl( biglvert nabla ^{m_{2}}v bigrvert ^{q}+h_{2}(x) vert v vert ^{q}bigr),dmu \& quad = biggl(frac{1}{p}-K_{1}^{p}C_{4} biggr) Vert u Vert _{W^{m_{1},p}(V)}^{p} + biggl( frac{1}{q}-K_{2}^{q}C_{4} biggr) Vert v Vert _{W^{m_{2},q}(V)}^{q} \& quad geq min biggl{ biggl(frac{1}{p}-K_{1}^{p}C_{4} biggr) , biggl(frac{1}{q}-K_{2}^{q}C_{4} biggr) biggr} cdot textstylebegin{cases} frac{1}{2^{p-1}}( Vert u Vert _{W^{m_{1},p}(V)}+ Vert v Vert _{W^{m_{2},q}(V)})^{p} & text{if }pgeq q, \ frac{1}{2^{q-1}}( Vert u Vert _{W^{m_{1},p}(V)}+ Vert v Vert _{W^{m_{2},q}(V)})^{q} & text{if }p< q end{cases}displaystyle \& quad geq min biggl{ biggl(frac{1}{p}-K_{1}^{p}C_{4} biggr) , biggl(frac{1}{q}-K_{2}^{q}C_{4} biggr) biggr} cdot textstylebegin{cases} frac{rho ^{p}}{2^{p-1}}& text{if }pgeq q, \ frac{rho ^{q}}{2^{q-1}}& text{if }p< q end{cases}displaystyle \& quad := alpha >0. end{aligned}$$

The proof is completed. □

Lemma 3.3

Assume that ((F_{1})) and ((F_{3})) hold. Then there exists ((u_{0},v_{0})in Wbackslash bar{B}_{rho} (0)) such that (varphi (u_{0},v_{0})leq 0 ).

Proof

Choose (e=(e_{1},e_{2}) in W) such that (|e_{1}|_{L^{p}(V)}neq 0) and (|e_{2}|_{L^{q}(V)}neq 0). By ((F_{3})) there exist (varepsilon _{1}>0) and (delta _{3}>0) such that

$$ F(x,t,s)geq biggl(frac{1}{p} frac{ Vert e_{1} Vert ^{p}_{W^{m_{1},p}(V)}}{ Vert e_{1} Vert ^{p}_{L^{p}(V)}}+ frac{1}{q} frac{ Vert e_{2} Vert ^{q}_{W^{m_{2},q}(V)}}{ Vert e_{2} Vert ^{q}_{L^{q}(V)}}+ frac{varepsilon _{1}}{2} biggr) bigl( vert t vert ^{p}+ vert s vert ^{q} bigr)$$

for all (|(t,s)|>delta _{3}) and (xin V). Thus by ((F_{1})) there exists (C_{5}>0) such that for all ((t, s)in mathbb{R}^{2}) and all (xin V),

$$ F(x,t,s)geq biggl(frac{1}{p} frac{ Vert e_{1} Vert ^{p}_{W^{m_{1},p}(V)}}{ Vert e_{1} Vert ^{p}_{L^{p}(V)}}+ frac{1}{q} frac{ Vert e_{2} Vert ^{q}_{W^{m_{2},q}(V)}}{ Vert e_{2} Vert ^{q}_{L^{q}(V)}}+ frac{varepsilon _{1}}{2} biggr) bigl( vert t vert ^{p}+ vert s vert ^{q} bigr)-C_{5}.$$

Then for every (lambda >0), we have

$$begin{aligned} varphi (lambda e_{1},lambda e_{2}) =& frac{1}{p} int _{V}bigl( biglvert nabla ^{m_{1}} lambda e_{1} bigrvert ^{p}+h_{1}(x) vert lambda e_{1} vert ^{p}bigr),dmu + frac{1}{q} int _{V}bigl( biglvert nabla ^{m_{2}}lambda e_{2} bigrvert ^{q}+h_{2}(x) vert lambda e_{2} vert ^{q}bigr),dmu \ & {}- int _{V} F(x,lambda e_{1},lambda e_{2}) \ leq & frac{1}{p}lambda ^{p} Vert e_{1} Vert ^{p}_{W^{m_{1},p}(V)}+ frac{1}{q}lambda ^{q} Vert e_{2} Vert ^{q}_{W^{m_{2},q}(V)} \ & {}- biggl(frac{1}{p} frac{ Vert e_{1} Vert ^{p}_{W^{m_{1},p}(V)}}{ Vert e_{1} Vert ^{p}_{L^{p}(V)}}+ frac{1}{q} frac{ Vert e_{2} Vert ^{q}_{W^{m_{2},q}(V)}}{ Vert e_{2} Vert ^{q}_{L^{q}(V)}}+ frac{varepsilon _{1}}{2} biggr) bigl(lambda ^{p} Vert e_{1} Vert ^{p}_{L^{p}(V)}+ lambda ^{q} Vert e_{2} Vert ^{q}_{L^{q}(V)} bigr) \ &{}+C_{5}sum_{xin V}mu (x) \ leq & -frac{varepsilon _{1}}{2}lambda ^{p} Vert e_{1} Vert ^{p}_{L^{p}(V)},dmu – frac{varepsilon _{1}}{2}lambda ^{q} Vert e_{2} Vert ^{q}_{L^{q}(V)}+C_{5} sum _{xin V}mu (x) \ to & -infty ,quad text{as }lambda to infty . end{aligned}$$

Hence there exists a sufficiently large (lambda ^{*}>1 ) such that (varphi (lambda ^{*} e_{1},lambda ^{*} e_{2})<0). Let (lambda ^{*} e_{1}=u_{0}) and (lambda ^{*} e_{2}=v_{0}). Then (varphi (u_{0},v_{0})leq 0 ). □

Proof of Theorem 1.1

It is easy to see that (varphi (0,0)=0). It follows from Lemmas 2.1 and 3.13.3, φ possesses a critical value (cge alpha >0), that is, there exists a point ((u_{*},v_{*})in W) such that

$$ varphi (u_{*},v_{*})=cquad text{and}quad varphi ‘(u_{*},v_{*})=0. $$

Hence the associated point ((u_{*},v_{*})in W) is a nontrivial weak solution of system (1.1). □

Lemma 3.4

Assume that ((F_{1})) and ((F_{3})) hold. Then for any finitedimensional subspace (widetilde{X}subset W), there is (R=R(widetilde{X})>0) such that (varphi (u)leq 0 ) on (widetilde{X}backslash B_{R}(0)).

Proof

Let (operatorname{dim} widetilde{X}=m ). Then there exist positive constants (C_{6}(m)) and (C_{7}(m)) such that

$$ Vert u Vert _{W^{m_{1},p}(V)}leq C_{6}(m) Vert u Vert _{L^{p}(V)},qquad Vert v Vert _{W^{m_{2},q}(V)} leq C_{7}(m) Vert v Vert _{L^{q}(V)} $$

(3.7)

for all ((u,v)in widetilde{X}). By ((F_{3})) we know that there exist constants (beta >frac{C_{6}(m)^{p}}{p}+frac{C_{7}(m)^{q}}{q}) and (r>0) such that

$$ F(x,t,s)geq beta bigl( vert t vert ^{p}+ vert s vert ^{q}bigr)quad text{for all } biglvert (t,s) bigrvert geq r text{ and }xin V. $$

(3.8)

It follows from ((F_{1})) and (3.8) that there exists (C_{8}>0) such that

$$ F(x,t,s)geq beta bigl( vert t vert ^{p}+ vert s vert ^{q}bigr)-C_{8} quad text{for all } (t,s) in mathbb{R}^{2} text{ and }xin V. $$

(3.9)

Then by (3.7) and (3.9) we have

$$begin{aligned}& varphi (u,v) \& quad = frac{1}{p} int _{V}bigl( biglvert nabla ^{m_{1}}u bigrvert ^{p}+h_{1}(x) vert u vert ^{p}bigr),dmu +frac{1}{q} int _{V}bigl( biglvert nabla ^{m_{2}}v bigrvert ^{q}+h_{2}(x) vert v vert ^{q}bigr),dmu – int _{V} F(x,u,v),dmu \& quad leq frac{1}{p} Vert u Vert ^{p}_{W^{m_{1},p}(V)}+ frac{1}{q} Vert v Vert ^{q}_{W^{m_{2},q}(V)}- beta bigl( Vert u Vert ^{p}_{L^{p}}+ Vert v Vert ^{q}_{L^{q}}bigr)+C_{8}sum _{xin V}mu (x) \& quad leq frac{1}{p} Vert u Vert ^{p}_{W^{m_{1},p}(V)}+ frac{1}{q} Vert v Vert ^{q}_{W^{m_{2},q}(V)} -beta biggl(frac{1}{C_{6}^{p}(m)} Vert u Vert ^{p}_{W^{m_{1},p}(V)}+ frac{1}{C_{7}^{q}(m)} Vert v Vert ^{q}_{W^{m_{2},q}(V)} biggr) \& qquad {}+C_{8}sum_{x in V}mu (x), end{aligned}$$

for all ((u,v)in widetilde{X}). Note that (beta >frac{C_{6}(m)^{p}}{p}+frac{C_{7}(m)^{q}}{q}). So (varphi (u,v)to -infty ) as (|(u,v)|to infty ). Thus we complete the proof. □

Proof of Theorem 1.2

By ((F_{1})) and ((F_{5})) we know that φ is even and (varphi (0,0)=0). Let (X=W), (Y={0}) and (Z=W). Then by Lemma 3.1, Lemma 3.2, Lemma 3.4, Remark 2.1, Remark 2.2, and Lemma 2.2 we obtain that φ possesses at least dimW critical values. Thus we complete the proof. □

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Disclaimer:

This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (https://www.springeropen.com/)