• Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. The Lancet. 2019;393(10177):1240–53.

    Article 

    Google Scholar
     

  • Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol. 2015;309(7):C444–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim S, Kim B, Song YS. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 2016;107(9):1173–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ayantunde AA, Parsons SL. Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann Oncol. 2007;18(5):945–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang C, Wang C, Rong Z, Xu Z, Deng K, Zhao W, et al. Mediation analysis reveals potential biological mechanism of ascites influencing recurrence in patients with epithelial ovarian cancer. Cancer Manag Res. 2020;12:793–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012;31(1–2):143–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meunier L, Puiffe ML, Le Page C, Filali-Mouhim A, Chevrette M, Tonin PN, et al. Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol. 2010;3(4):230–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ford CE, Werner B, Hacker NF, Warton K. The untapped potential of ascites in ovarian cancer research and treatment. Br J Cancer. 2020;123(1):9–16.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burleson KM, Boente MP, Pambuccian SE, Skubitz AP. Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med. 2006;4:6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pakuła M, Mikuła-Pietrasik J, Witucka A, Kostka-Jeziorny K, Uruski P, Moszyński R, et al. The Epithelial-Mesenchymal transition initiated by malignant ascites underlies the transmesothelial invasion of ovarian cancer cells. Int J Mol Sci. 2019;20(1):137.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mikula-Pietrasik J, Uruski P, Szubert S, Szpurek D, Sajdak S, Tykarski A, et al. Malignant ascites determine the transmesothelial invasion of ovarian cancer cells. Int J Biochem Cell Biol. 2017;92:6–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hudson LG, Zeineldin R, Stack MS. Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis. 2008;25(6):643–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shield K, Ackland ML, Ahmed N, Rice GE. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol. 2009;113(1):143–8.

    PubMed 
    Article 

    Google Scholar
     

  • Bekes I, Friedl TW, Kohler T, Mobus V, Janni W, Wockel A, et al. Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascites production in ovarian cancer? Mol Cancer. 2016;15:13.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D. Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene. 2012;31(20):2521–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 2020;19(1):13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, et al. The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 2018;17(1):160.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer. 2020;19(1):71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meng J, Chen S, Han JX, Qian B, Wang XR, Zhong WL, et al. Twist1 regulates vimentin through Cul2 circular RNA to promote EMT in hepatocellular carcinoma. Cancer Res. 2018;78(15):4150–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Tong X, Zhou Z, Wang S, Lei Z, Zhang T, et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-beta-induced epithelial-mesenchymal transition and metastasis by controlling TIF1gamma in non-small cell lung cancer. Mol Cancer. 2018;17(1):140.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen Q, Zhang J, He Y, Wang Y. hsa_circ_0061140 knockdown reverses FOXM1-mediated cell growth and metastasis in ovarian cancer through miR-370 sponge activity. Mol Ther Nucleic Acids. 2018;13:55–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou J, Dong ZN, Qiu BQ, Hu M, Liang XQ, Dai X, Hong D, Sun YF. CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging-us. 2020;12(14):14080.

    CAS 
    Article 

    Google Scholar
     

  • Li X, Lin S, Mo Z, Jiang J, Tang H, Wu C, et al. CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial-mesenchymal transition (EMT) axis. J Cancer. 2020;11(3):599–609.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cheng H, Wang N, Tian J, Li Y, Ren L, Shi Z. Circular RNA Circ_0025033 promotes the evolvement of ovarian cancer through the regulation of miR-330-5p/KLK4 Axis. Cancer Manag Res. 2020;12:2753–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deng G, Zhou X, Chen L, Yao Y, Li J, Zhang Y, et al. High expression of ESRP1 regulated by circ-0005585 promotes cell colonization in ovarian cancer. Cancer Cell Int. 2020;20:174.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kurman R, Carcangiu ML, Herrington CS, Young RH. WHO classification of tumours of female reproductive organs. Lyon: IARC Press; 2014.


    Google Scholar
     

  • Suarez-Arnedo A, Torres Figueroa F, Clavijo C, Arbelaez P, Cruz JC, Munoz-Camargo C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE. 2020;15(7): e0232565.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341–52.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformat. 2013;14(7):1–15.


    Google Scholar
     

  • Kumar L, Futschik ME. A software package for soft clustering of microarray data. Bioinformation. 2007;2(5):5–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ahmed N, Abubaker K, Findlay J, Quinn M. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets. 2010;10:268–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Futschik ME, Carlisle B. Noise-robust soft clustering of gene expression time-course data. J Bioinformat Computa Biol. 2005;3(2):965–88.

    CAS 
    Article 

    Google Scholar
     

  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013;13(4):273–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016;23(3):147–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Tong X, Zhou Z, Wang S, Lei Z, Zhang T, et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol Cancer. 2018;17(1):1–18.

    Article 
    CAS 

    Google Scholar
     

  • Ahmed I, Karedath T, Andrews SS. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget. 2015;7(24):36366–81.

    Article 

    Google Scholar
     

  • Chen Y, Shao Z, Jiang E, Zhou X, Wang L, Wang H, et al. CCL21/CCR7 interaction promotes EMT and enhances the stemness of OSCC via a JAK2/STAT3 signaling pathway. J Cell Physiol. 2020;235(9):5995–6009.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu W, Jiang D, Gong F, Huang Y, Luo Y, Rong Y, et al. miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells. Cell Death Dis. 2020;11(2):93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meves A, Nikolova E, Heim JB, Squirewell EJ, Cappel MA, Pittelkow MR, et al. Tumor cell adhesion as a risk factor for sentinel lymph node metastasis in primary cutaneous melanoma. J Clin Oncol. 2015;33(23):2509–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hirst CE, Ng ES, Azzola L, Voss AK, Thomas T, Stanley EG, et al. Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene. Dev Biol. 2006;293(1):90–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lipchina I, Elkabetz Y, Hafner M, Sheridan R, Mihailovic A, Tuschl T, et al. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev. 2011;25(20):2173–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ota H, Hikita T, Sawada M, Nishioka T, Matsumoto M, Komura M, et al. Speed control for neuronal migration in the postnatal brain by Gmip-mediated local inactivation of RhoA. Nat Commun. 2014;5:4532.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)