• Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol. 2016;791:8–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alsaad KO, Herzenberg AM. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol. 2007;60(1):18–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lim A. Diabetic nephropathy—complications and treatment. Int J Nephrol Renov Dis. 2014;7:361–81.

    Article 

    Google Scholar
     

  • Zhao JH. Mesangial cells and renal fibrosis. Adv Exp Med Biol. 2019;1165:165–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin ME, Herr DR, Chun J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 2010;91(3–4):130–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moolenaar WH. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995;270(22):12949–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim D, Li HY, Lee JH, Oh YS, Jun HS. Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Exp Mol Med. 2019;51(2):1–10.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sakai N, Chun J, Duffield JS, Wada T, Luster AD, Tager AM. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J. 2013;27(5):1830–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang H, Bialkowska A, Rusovici R, Chanchevalap S, Shim H, Katz JP, Yang VW, Yun CC. Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Krüppel-like factor 5. J Biol Chem. 2007;282(21):15541–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li HY, Oh YS, Choi JW, Jung JY, Jun HS. Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy in db/db mice. Kidney Int. 2017;91(6):1362–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee JH, Sarker MK, Choi H, Shin D, Kim D, Jun HS. Lysophosphatidic acid receptor 1 inhibitor, AM095, attenuates diabetic nephropathy in mice by downregulation of TLR4/NF-κB signaling and NADPH oxidase. Biochim Biophys Acta. 2019;1865(6):1332–40.

    CAS 
    Article 

    Google Scholar
     

  • Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C. Novel insights into ChREBP regulation and function. Trends Endocrinol Metab. 2013;24(5):257–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iizuka K. Recent progress on the role of ChREBP in glucose and lipid metabolism. Endocr J. 2013;60(5):543–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA. 2004;101(19):7281–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen H, Li Y, Zhu Y, Wu L, Meng J, Lin N, Yang D, Li M, Ding W, Tong X, et al. Advanced glycation end products promote ChREBP expression and cell proliferation in liver cancer cells by increasing reactive oxygen species. Medicine. 2017;96(33): e7456.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park MJ, Kim DI, Lim SK, Choi JH, Han HJ, Yoon KC, Park SH. High glucose-induced O-GlcNAcylated carbohydrate response element-binding protein (ChREBP) mediates mesangial cell lipogenesis and fibrosis: the possible role in the development of diabetic nephropathy. J Biol Chem. 2014;289(19):13519–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim HJ, Kim D, Yoon H, Choi CS, Oh YS, Jun HS. Prevention of oxidative stress-induced pancreatic beta cell damage by Broussonetia Kazinoki Siebold fruit extract via the ERK-Nox4 pathway. Antioxidants (Basel, Switzerland). 2020;9(5):406.

    CAS 

    Google Scholar
     

  • Kim D, Kim HJ, Cha SH, Jun HS. Protective effects of Broussonetia kazinoki Siebold fruit extract against palmitate-induced lipotoxicity in mesangial cells. Evid-Based Complement Alternat Med eCAM. 2019;2019:4509403.

    PubMed 

    Google Scholar
     

  • Stoeckman AK, Ma L, Towle HC. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem. 2004;279(15):15662–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johnson RJ, Iida H, Alpers CE, Majesky MW, Schwartz SM, Pritzi P, Gordon K, Gown AM. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest. 1991;87(3):847–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li XQ, Tian W, Liu XX, Zhang K, Huo JC, Liu WJ, Li P, Xiao X, Zhao MG, Cao W. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage. Sci Rep. 2016;6:26854.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol. 2006;17(11):3067–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen N, Song S, Yang Z, Wu M, Mu L, Zhou T, Shi Y. ChREBP deficiency alleviates apoptosis by inhibiting TXNIP/oxidative stress in diabetic nephropathy. J Diabetes Complications. 2021;35(12): 108050.

    PubMed 
    Article 

    Google Scholar
     

  • Kang S, Han J, Song SY, Kim WS, Shin S, Kim JH, Ahn H, Jeong JH, Hwang SJ, Sung JH. Lysophosphatidic acid increases the proliferation and migration of adipose-derived stem cells via the generation of reactive oxygen species. Mol Med Rep. 2015;12(4):5203–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin CC, Lin CE, Lin YC, Ju TK, Huang YL, Lee MS, Chen JH, Lee H. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells. Biochem Biophys Res Commun. 2013;440(4):564–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saunders JA, Rogers LC, Klomsiri C, Poole LB, Daniel LW. Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radical Biol Med. 2010;49(12):2058–67.

    CAS 
    Article 

    Google Scholar
     

  • Li Y, Yang D, Tian N, Zhang P, Zhu Y, Meng J, Feng M, Lu Y, Liu Q, Tong L, et al. The ubiquitination ligase SMURF2 reduces aerobic glycolysis and colorectal cancer cell proliferation by promoting ChREBP ubiquitination and degradation. J Biol Chem. 2019;294(40):14745–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mund T, Lewis MJ, Maslen S, Pelham HR. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc Natl Acad Sci USA. 2014;111(47):16736–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi YH, Kim YJ, Jeong HM, Jin YH, Yeo CY, Lee KY. Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 2014;281(16):3656–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bai Y, Ying Y. The post-translational modifications of Smurf2 in TGF-β signaling. Front Mol Biosci. 2020;7:128.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Himmelfarb J, Tuttle KR. New therapies for diabetic kidney disease. N Engl J Med. 2013;369(26):2549–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetic kidney disease: current and future. Diabetes Metab J. 2021;45(1):11–26.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J Histochem Cytochem. 2012;60(12):976–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaits F, Salles JP, Chap H. Dual effect of lysophosphatidic acid on proliferation of glomerular mesangial cells. Kidney Int. 1997;51(4):1022–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Inoue CN, Nagano I, Ichinohasama R, Asato N, Kondo Y, Iinuma K. Bimodal effects of platelet-derived growth factor on rat mesangial cell proliferation and death, and the role of lysophosphatidic acid in cell survival. Clin Sci (London, England: 1979). 2001;101(1):11–9.

    CAS 
    Article 

    Google Scholar
     

  • Xing Y, Ganji SH, Noh JW, Kamanna VS. Cell density-dependent expression of EDG family receptors and mesangial cell proliferation: role in lysophosphatidic acid-mediated cell growth. Am J Physiol Renal Physiol. 2004;287(6):F1250-1257.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang MZ, Wang X, Yang H, Fogo AB, Murphy BJ, Kaltenbach R, Cheng P, Zinker B, Harris RC. Lysophosphatidic acid receptor antagonism protects against diabetic nephropathy in a type 2 diabetic model. J Am Soc Nephrol. 2017;28(11):3300–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grove KJ, Voziyan PA, Spraggins JM, Wang S, Paueksakon P, Harris RC, Hudson BG, Caprioli RM. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res. 2014;55(7):1375–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hirata T, Smith SV, Takahashi T, Miyata N, Roman RJ. Increased levels of renal lysophosphatidic acid in rodent models with renal disease. J Pharmacol Exp Ther. 2021;376(2):240–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rancoule C, Attané C, Grès S, Fournel A, Dusaulcy R, Bertrand C, Vinel C, Tréguer K, Prentki M, Valet P, et al. Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice. Diabetologia. 2013;56(6):1394–402.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saulnier-Blache JS, Feigerlova E, Halimi JM, Gourdy P, Roussel R, Guerci B, Dupuy A, Bertrand-Michel J, Bascands JL, Hadjadj S, et al. Urinary lysophopholipids are increased in diabetic patients with nephropathy. J Diabetes Complications. 2017;31(7):1103–8.

    PubMed 
    Article 

    Google Scholar
     

  • Yoshioka K, Hirakawa Y, Kurano M, Ube Y, Ono Y, Kojima K, Iwama T, Kano K, Hasegawa S, Inoue T, et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney Int. 2021;101:510.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ortega-Prieto P, Postic C. Carbohydrate sensing through the transcription factor ChREBP. Front Genet. 2019;10:472.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cho KH, Kim HJ, Kamanna VS, Vaziri ND. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochem Biophys Acta. 2010;1800(1):6–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes. 2006;55(9):2502–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang W, Li X, Zhou SG. Ablation of carbohydrate-responsive element-binding protein improves kidney injury in streptozotocin-induced diabetic mice. Eur Rev Med Pharmacol Sci. 2017;21(1):42–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol CB. 2014;24(10):R453-462.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gorin Y, Block K. Nox as a target for diabetic complications. Clin Sci (London, England: 1979). 2013;125(8):361–82.

    CAS 
    Article 

    Google Scholar
     

  • Gorin Y, Wauquier F. Upstream regulators and downstream effectors of NADPH oxidases as novel therapeutic targets for diabetic kidney disease. Mol Cells. 2015;38(4):285–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013;24(10):1512–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shah A, Xia L, Goldberg H, Lee KW, Quaggin SE, Fantus IG. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J Biol Chem. 2013;288(10):6835–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eid AA, Lee DY, Roman LJ, Khazim K, Gorin Y. Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol Cell Biol. 2013;33(17):3439–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Suzuki S, Yokoyama A, Noro E, Aoki S, Shimizu K, Shimada H, Sugawara A. Expression and pathophysiological significance of carbohydrate response element binding protein (ChREBP) in the renal tubules of diabetic kidney. Endocr J. 2020;67(3):335–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol. 2020;67(Pt 2):102–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma M, Yang W, Cai Z, Wang P, Li H, Mi R, Jiang Y, Xie Z, Sui P, Wu Y, et al. SMAD-specific E3 ubiquitin ligase 2 promotes angiogenesis by facilitating PTX3 degradation in MSCs from patients with ankylosing spondylitis. Stem Cells. 2021;39(5):581–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cai Y, Huang G, Ma L, Dong L, Chen S, Shen X, Zhang S, Xue R, Sun D, Zhang S. Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. Biochim Biophys Acta. 2018;1865(2):297–308.

    CAS 
    Article 

    Google Scholar
     

  • Ruan HB, Nie Y, Yang X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics MCP. 2013;12(12):3489–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ido-Kitamura Y, Sasaki T, Kobayashi M, Kim HJ, Lee YS, Kikuchi O, Yokota-Hashimoto H, Iizuka K, Accili D, Kitamura T. Hepatic FoxO1 integrates glucose utilization and lipid synthesis through regulation of Chrebp O-glycosylation. PLoS ONE. 2012;7(10): e47231.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park F, Miller DD. Role of lysophosphatidic acid and its receptors in the kidney. Physiol Genomics. 2017;49(11):659–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo H, German P, Bai S, Barnes S, Guo W, Qi X, Lou H, Liang J, Jonasch E, Mills GB, et al. The PI3K/AKT pathway and renal cell carcinoma. J Genet Genomics. 2015;42(7):343–53.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)