• Zuckerkandl E, Pauling L, Bryson V, Vogel H. Evolving genes and proteins. Science. 1965;147(3653):68–71.

    Article 

    Google Scholar
     

  • Dickerson RE. The structure of cytochrome c and the rates of molecular evolution. J Mol Evol. 1971;1(1):26–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bromham L. Why do species vary in their rate of molecular evolution? Biol Lett. 2009;5:401–4.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bromham L. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Phil Trans Roy Soc B. 2011;366(1577):2503–13.

    Article 

    Google Scholar
     

  • Barraclough TG, Savolainen V. Evolutionary rates and species diversity in flowering plants. Evolution. 2001;55:677–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bromham L, Hua X, Lanfear R, Cowman P. Exploring the relationships between mutation rates, life history, genome size, environment and species richness in flowering plants. Am Nat. 2015;185:507–24.

    PubMed 
    Article 

    Google Scholar
     

  • Lanfear R, Ho SYW, Love D, Bromham L. Mutation rate is linked to diversification in birds. Proc Natl Acad Sci U S A. 2010;107(47):20423–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eo SH, DeWoody JA. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc R Soc B. 2010;277:3587–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gillman LN, Keeling DJ, Gardner RC, Wright SD. Faster evolution of highly conserved DNA in tropical plants. J Evol Biol. 2010;23(6):1327–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gillman LN, Wright SD. Species richness and evolutionary speed: the influence of temperature, water and area. J Biogeogr. 2014;41(1):39–51.

    Article 

    Google Scholar
     

  • Orton MG, May JA, Ly W, Lee DJ, Adamowicz SJ. Is molecular evolution faster in the tropics? Heredity (Edinb). 2019;122(5):513–24.

    CAS 
    Article 

    Google Scholar
     

  • Ho SYW. The changing face of the molecular evolutionary clock. Trends Ecol Evol. 2014;29(9):496–503.

    PubMed 
    Article 

    Google Scholar
     

  • Kumar S, Hedges SB. Advances in time estimation methods for molecular data. Mol Biol Evol. 2016;33(4):863–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumar S. Molecular clocks: four decades of evolution. Nat Rev Genet. 2005;6(8):654–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • dos Reis M, Donoghue PC, Yang Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet. 2016;17(2):71–80.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ho SYW, Duchêne S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol. 2014;23(24):5947–65.

    PubMed 
    Article 

    Google Scholar
     

  • Heath TA, Holder MT, Huelsenbeck JP. A Dirichlet process prior for estimating lineage-specific substitution rates. Mol Biol Evol. 2012;29(3):939–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoder AD, Yang Z. Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol. 2000;17(7):1081–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drummond AJ, Suchard MA. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 2010;8(1):114.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLOS Biol. 2006;4(5): e88.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003;19(2):301–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith SA, O’Meara BC. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012;28(20):2689–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sauquet H. A practical guide to molecular dating. CR Palevol. 2013;12(6):355–67.

    Article 

    Google Scholar
     

  • Wilke T, Schultheiß R, Albrecht C. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. Am Malac B. 2009;27(1/2):25–45.

    Article 

    Google Scholar
     

  • Thorne JL, Kishino H, Painter IS. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol. 1998;15(12):1647–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kishino H, Thorne JL, Bruno WJ. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol. 2001;18(3):352–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aris-Brosou S, Yang Z. Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol. 2002;51(5):703–14.

    PubMed 
    Article 

    Google Scholar
     

  • Lepage T, Lawi S, Tupper P, Bryant D. Continuous and tractable models for the variation of evolutionary rates. Math Biosci. 2006;199(2):216–33.

    PubMed 
    Article 

    Google Scholar
     

  • Sarver BAJ, Pennell MW, Brown JW, Keeble S, Hardwick KM, Sullivan J, et al. The choice of tree prior and molecular clock does not substantially affect phylogenetic inferences of diversification rates. PeerJ. 2019. https://doi.org/10.7717/peerj.6334.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duchêne S, Lanfear R, Ho SYW. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol Phylogenet Evol. 2014;78:277–89.

    PubMed 
    Article 

    Google Scholar
     

  • Lepage T, Bryant D, Philippe H, Lartillot N. A general comparison of relaxed molecular clock models. Mol Biol Evol. 2007;24(12):2669–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foster CSP, Sauquet H, van der Merwe M, McPherson H, Rossetto M, Ho SYW. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst Biol. 2017;66(3):338–51.

    PubMed 

    Google Scholar
     

  • Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DTJ. Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol. 2006;23(10):1832–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Battistuzzi FU, Filipski A, Hedges SB, Kumar S. Performance of relaxed-clock methods in estimating evolutionary divergence times and their credibility intervals. Mol Biol Evol. 2010;27(6):1289–300.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Worobey M, Han G-Z, Rambaut A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature. 2014;508(7495):254–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crisp MD, Hardy NB, Cook LG. Clock model makes a large difference to age estimates of long-stemmed clades with no internal calibration: a test using Australian grasstrees. BMC Evol Biol. 2014;14:263.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • dos Reis M, Thawornwattana Y, Angelis K, Telford Maximilian J, Donoghue Philip CJ, Yang Z. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol. 2015;25(22):2939–50.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Welch JJ, Bromham L. Molecular dating when rates vary. Trends Ecol Evol. 2005;20(6):320–7.

    PubMed 
    Article 

    Google Scholar
     

  • Lin G, Huang Z, Wang L, Chen Z, Zhang T, Gillman LN, et al. Evolutionary rates of bumblebee genomes are faster at lower elevations. Mol Biol Evol. 2019;36(6):1215–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lourenço JM, Glémin S, Chiari Y, Galtier N. The determinants of the molecular substitution process in turtles. J Evol Biol. 2013;26(1):38–50.

    PubMed 
    Article 

    Google Scholar
     

  • Goldie X, Gillman L, Crisp M, Wright S. Evolutionary speed limited by water in arid Australia. Proc R Soc B. 2010;277(1694):2645–53.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berv JS, Field DJ. Genomic signature of an avian Lilliput effect across the K-Pg extinction. Syst Biol. 2018;67(1):1–13.

    PubMed 
    Article 

    Google Scholar
     

  • Barrera-Redondo J, Ramirez-Barahona S, Eguiarte LE. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity. Evolution. 2018;72(5):1050–62.

    PubMed 
    Article 

    Google Scholar
     

  • Qiu F, Kitchen A, Burleigh JG, Miyamoto MM. Scombroid fishes provide novel insights into the trait/rate associations of molecular evolution. J Mol Evol. 2014;78(6):338–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • May JA, Feng Z, Orton MG, Adamowicz SJ. The effects of ecological traits on the rate of molecular evolution in ray-finned fishes: a multivariable approach. J Mol Evol. 2020;88(8–9):689–702.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Welch JJ, Bininda-Emonds ORP, Bromham L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol Biol. 2008;8(1):53.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Thomas JA, Welch JJ, Lanfear R, Bromham L. A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol. 2010;27(5):1173–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hua X, Cowman P, Warren D, Bromham L. Longevity is linked to mitochondrial mutation rates in rockfish: a test using Poisson regression. Mol Biol Evol. 2015;32(10):2633–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Galtier N, Blier PU, Nabholz B. Inverse relationship between longevity and evolutionary rate of mitochondrial proteins in mammals and birds. Mitochondrion. 2009;9(1):51–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bromham L, Cowman PF, Lanfear R. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol. 2013;13(1):126.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mitterboeck TF, Adamowicz SJ. Flight loss linked to faster molecular evolution in insects. Proc R Soc B. 2013;280(1767):20131128.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wong A. Covariance between testes size and substitution rates in primates. Mol Biol Evol. 2014;31(6):1432–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Woolfit M, Bromham L. Population size and molecular evolution on islands. Proc Biol Sci. 2005;272(1578):2277–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17(11):704–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gossmann TI, Keightley PD, Eyre-Walker A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol Evol. 2012;4(5):658–67.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Charlesworth B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet. 2009;10(3):195–205.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mindell DP, Sites JW Jr, Graur D. Speciational evolution: a phylogenetic test with allozymes in Sceloporus (Reptilia). Cladistics. 1989;5(1):49–61.

    PubMed 
    Article 

    Google Scholar
     

  • Iglesias-Carrasco M, Jennions MD, Ho SYW, Duchene DA. Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proc R Soc B. 2019;286:1899.

    Article 

    Google Scholar
     

  • Duchêne DA, Hua X, Bromham L. Phylogenetic estimates of diversification rate are affected by molecular rate variation. J Evol Biol. 2017;30(10):1884–97.

    PubMed 
    Article 

    Google Scholar
     

  • Lancaster LT. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol Biol. 2010;10(1):162.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fontanillas E, Welch JJ, Thomas JA, Bromham L. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Ecol Evol. 2007;7:95.


    Google Scholar
     

  • Pagel M, Venditti C, Meade A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science. 2006;314(5796):119.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Webster AJ, Payne RJH, Pagel M. Molecular phylogenies link rates of evolution and speciation. Science. 2003;301:478.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ezard THG, Thomas GH, Purvis A. Inclusion of a near-complete fossil record reveals speciation-related molecular evolution. Methods Ecol Evol. 2013;4(8):745–53.

    Article 

    Google Scholar
     

  • Hua X, Bromham L. Darwinism for the genomic age: connecting mutation to diversification. Front Genet. 2017;8:12.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937.


    Google Scholar
     

  • Muller HJ. Isolating mechanisms, evolution and temperature. Biol Symp. 1942;6:71–125.


    Google Scholar
     

  • Gavrilets S. Fitness landscapes and the origin of species (MPB-41). Princeton: Princeton University Press; 2004.

    Book 

    Google Scholar
     

  • Orr HA. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics. 1995;139(4):1805–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frankham R. Genetics and extinction. Biol Cons. 2005;126(2):131–40.

    Article 

    Google Scholar
     

  • Venditti C, Pagel M. Speciation as an active force in promoting genetic evolution. Trends Ecol Evol. 2010;25(1):14–20.

    PubMed 
    Article 

    Google Scholar
     

  • Janzen T, Bokma F, Etienne RS. Nucleotide substitutions during speciation may explain substitution rate variation. BioRxiv. 2021. https://doi.org/10.1093/sysbio/syab085.

    Article 

    Google Scholar
     

  • Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW. Bayesian molecular dating: opening up the black box. Biol Rev. 2018;93(2):1165–91.

    PubMed 
    Article 

    Google Scholar
     

  • Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc Biol Sci. 2015;282(1798):20141013.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2005;23(1):212–26.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhu T, Dos Reis M, Yang Z. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci. Syst Biol. 2015;64(2):267–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • dos Reis M, Yang Z. The unbearable uncertainty of Bayesian divergence time estimation. J Systemat Evol. 2013;51(1):30–43.

    Article 

    Google Scholar
     

  • Manceau M, Marin J, Morlon H, Lambert A. Model-based inference of punctuated molecular evolution. Mol Biol Evol. 2020;37(11):3308–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nabholz B, Lanfear R, Fuchs J. Body mass-corrected molecular rate for bird mitochondrial DNA. Mol Ecol. 2016;25(18):4438–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maliet O, Hartig F, Morlon H. A model with many small shifts for estimating species-specific diversification rates. Nat Ecol Evol. 2019;3(7):1086–92.

    PubMed 
    Article 

    Google Scholar
     

  • Lanfear R, Ho SYW, Love D, Bromham L. Mutation rate influences diversification rate in birds. Proc Natl Acad Sci U S A. 2010;107(47):20423–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comp Biol. 2019;15(4):e1006650.

    CAS 
    Article 

    Google Scholar
     

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comp Biol. 2014;10(4): e1003537.

    Article 
    CAS 

    Google Scholar
     

  • Yang ZH. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuhner MK, Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol. 1994;11(3):459–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981;53(1):131–47.

    Article 

    Google Scholar
     

  • Goldie X, Lanfear R, Bromham L. Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol Biol. 2011;11(1):286.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253(4):769–78.

    PubMed 
    Article 

    Google Scholar
     

  • Stadler T. Recovering speciation and extinction dynamics based on phylogenies. J Evol Biol. 2013;26(6):1203–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duchêne D, Duchêne S, Ho SYW. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences. Mol Ecol Res. 2015;15(4):785–94.

    Article 

    Google Scholar
     

  • Hedges SBK. Sudhir the timetree of life. New York: Oxford University Press; 2009.


    Google Scholar
     

  • Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like speciation and diversification. Mol Biol Evol. 2015;32(4):835–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McPeek MA, Brown JM. Clade age and not diversification rate explains species richness among animal taxa. Am Nat. 2007;169(4):E97-106.

    PubMed 
    Article 

    Google Scholar
     

  • Marin J, Rapacciuolo G, Costa GC, Graham CH, Brooks TM, Young BE, et al. Evolutionary time drives global tetrapod diversity. Proc R Soc B. 1872;2018(285):20172378.


    Google Scholar
     

  • Cardillo M. Latitude and rates of diversification in birds and butterflies. Proc R Soc B. 1999;266(1425):1221–5.

    PubMed Central 
    Article 

    Google Scholar
     

  • Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A. 2009;106(32):13410–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kozak KH, Wiens JJ. Testing the relationships between diversification, species richness, and trait evolution. Syst Biol. 2016;65(6):975–88.

    PubMed 
    Article 

    Google Scholar
     

  • Scholl JP, Wiens JJ. Diversification rates and species richness across the Tree of Life. Proc R Soc B. 1838;2016(283):20161334.


    Google Scholar
     

  • dos Reis M, Yang Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol Biol Evol. 2011;28(7):2161–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Guindon S. Rates and rocks: strengths and weaknesses of molecular dating methods. Front Genet. 2020;11:526.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hugall AF, Lee MS. The likelihood node density effect and consequences for evolutionary studies of molecular rates. Evolution. 2007;61(10):2293–307.

    PubMed 
    Article 

    Google Scholar
     

  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32(1):268–74.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Venditti C, Meade A, Pagel M. Detecting the node-density artifact in phylogeny reconstruction. Syst Biol. 2006;55(4):637–43.

    PubMed 
    Article 

    Google Scholar
     

  • Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, et al. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol. 2011;61(2):289–313.

    PubMed 
    Article 

    Google Scholar
     

  • Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mitchell KJ, Cooper A, Phillips MJ. Comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds.” Science. 2015;349(6255):1460.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cracraft J, Houde P, Ho SYW, Mindell DP, Fjeldså J, Lindow B, et al. Response to Comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds.” Science. 2015;349(6255):1460.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science. 2011;334(6055):521–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Phillips MJ. Geomolecular dating and the origin of placental mammals. Syst Biol. 2016;65(3):546–57.

    PubMed 
    Article 

    Google Scholar
     

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tong KJ, Duchêne S, Ho SYW, Lo N. Comment on “Phylogenomics resolves the timing and pattern of insect evolution.” Science. 2015;349(6247):487.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kjer KM, Ware JL, Rust J, Wappler T, Lanfear R, Jermiin LS, et al. Response to Comment on “Phylogenomics resolves the timing and pattern of insect evolution.” Science. 2015;349(6247):487.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedman M, et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature. 2018;559(7714):392–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wertheim JO, Sanderson MJ. Estimating diversification rates: how useful are divergence times? Evolution. 2011;65(2):309–20.

    PubMed 
    Article 

    Google Scholar
     

  • Rabosky DL. Positive correlation between diversification rates and phenotypic evolvability can mimic punctuated equilibrium on molecular phylogenies. Evolution. 2012;66(8):2622–7.

    PubMed 
    Article 

    Google Scholar
     

  • Pennell MW, Harmon LJ, Uyeda JC. Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol. 2014;29(1):23–32.

    PubMed 
    Article 

    Google Scholar
     

  • Pennell MW, Harmon LJ, Uyeda JC. Speciation is unlikely to drive divergence rates. Trends Ecol Evol. 2014;29(2):72–3.

    PubMed 
    Article 

    Google Scholar
     

  • Ritchie AM, Hua X, Cardillo M, Yaxley KJ, Dinnage R, Bromham L. Phylogenetic diversity metrics from molecular phylogenies: modelling expected degree of error under realistic rate variation. Divers Distrib. 2020. https://doi.org/10.1111/ddi.13179.

    Article 

    Google Scholar
     

  • Hartmann K, Wong D, Stadler T. Sampling trees from evolutionary models. Syst Biol. 2010;59(4):465–76.

    PubMed 
    Article 

    Google Scholar
     

  • Pybus OG, Harvey PH. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci. 2000;267(1459):2267–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)